3.4.1 三角函数的周期性 学案(含答案)
《3.4.1 三角函数的周期性 学案(含答案)》由会员分享,可在线阅读,更多相关《3.4.1 三角函数的周期性 学案(含答案)(5页珍藏版)》请在七七文库上搜索。
1、34函数yAsin (x)的图象与性质34.1三角函数的周期性学习目标1.了解周期函数、周期、最小正周期的定义.2.理解函数ysinx,ycosx,ytanx都是周期函数,都存在最小正周期.3.会求函数yAsin(x)及yAcos(x)的周期知识链接1观察单位圆中的三角函数线知正弦值每相隔2个单位重复出现,其理论依据是什么?答诱导公式sin(x2k)sinx(kZ)当自变量x的值增加2的整数倍时,函数值重复出现2设f(x)sinx,则sin(x2k)sinx可以怎样表示?答f(x2k)f(x)这就是说:当自变量x的值增加到x2k时,函数值重复出现预习导引1函数的周期性(1)对于函数f(x),如
2、果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(xT)f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期(2)如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期2正弦函数、余弦函数的周期性由sin(x2k)sin_x,cos(x2k)cos_x知ysinx与ycosx都是周期函数,2k(kZ且k0)都是它们的周期,且它们的最小正周期都是2.3yAsin(x),yAcos(x)的周期一般地,函数yAsin(x)及yAcos(x)(其中A,为常数,且A0,0)的最小正周期T.题型一求正弦、余弦函数的周期例1求下列函数的
3、周期:(1)ysin(xR);(2)y|sin2x|(xR)解(1)方法一令z2x,xR,zR.函数f(x)sinz的最小正周期是2,就是说变量z只要且至少要增加到z2,函数f(x)sinz(zR)的值才能重复取得,而z22x22(x),所以自变量x只要且至少要增加到x,函数值才能重复取得,从而函数f(x)sin(xR)的周期是.方法二f(x)sin的周期为.(2)作出y|sin2x|的图象由图象可知,y|sin2x|的周期为.规律方法(1)利用周期函数的定义求三角函数的周期,关键是抓住变量“x”增加到“xT”时函数值重复出现,则可得T是函数的一个周期(2)常见三角函数周期的求法:对于形如函数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.4
链接地址:https://www.77wenku.com/p-115138.html