8.2 余弦定理(二)学案(含答案)
《8.2 余弦定理(二)学案(含答案)》由会员分享,可在线阅读,更多相关《8.2 余弦定理(二)学案(含答案)(7页珍藏版)》请在七七文库上搜索。
1、8.2余弦定理(二)学习目标1.熟练掌握余弦定理及其变形形式.2.会用余弦定理解三角形.3.能利用正、余弦定理解决三角形的有关问题.知识链接1.以下问题不能用余弦定理求解的是.(1)已知两边和其中一边的对角,求另一边的对角,进而可求其他的边和角.(2)已知两角和一边,求其他角和边.(3)已知一个三角形的二条边及其夹角,求其他的边和角.(4)已知一个三角形的三条边,解三角形.答案(2)2.利用余弦定理判断三角形的形状正确的是.(1)在ABC中,若a2b2c2,则ABC为直角三角形.(2)在ABC中,若a2b2c2,则ABC为钝角三角形.答案(1)(3)预习导引1.正弦定理及其变形(1)2R.(2
2、)a2RsinA,b2RsinB,c2RsinC.2.余弦定理及其推论(1)a2b2c22bccosA,b2c2a22cacosB,c2a2b22abcosC.(2)cosA;cosB;cosC.(3)在ABC中,c2a2b2C为直角;c2a2b2C为钝角;c2a2b2C为锐角.3.三角变换公式(1)cos ()coscossinsin;(2)cos ()coscossinsin;(3)cos2cos2sin22cos2112sin2.题型一正弦、余弦定理的综合应用例1如图所示,在四边形ABCD中,ADCD,AD10,AB14,BDA60,BCD135,求BC的长.解在ABD中,AD10,AB
3、14,BDA60,设BDx,由余弦定理,得AB2AD2BD22ADBDcosBDA,142102x2210xcos60,即x210x960,解得x116,x26(舍去),BD16.ADCD,BDA60,CDB30.在BCD中,由正弦定理得,BC8.规律方法余弦定理和正弦定理一样,都是围绕着三角形进行边角互换的.在有关三角形的题目中注意选择是应用正弦定理,还是余弦定理,必要时也可列方程(组)求解.同时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能利用某个定理的信息.跟踪演练1在ABC中,内角A,B,C的对边长分别为a,b,c,已知a2c22b,且sinAcosC3cosAsinC
4、,求b.解方法一在ABC中,sinAcosC3cosAsinC,则由正弦定理及余弦定理有a3c,化简并整理得2(a2c2)b2.又由已知a2c22b,4bb2.解得b4或b0(舍).方法二由余弦定理得:a2c2b22bccosA.又a2c22b,b0.所以b2ccosA2.又sinAcosC3cosAsinC,sinAcosCcosAsinC4cosAsinC,sin (AC)4cosAsinC,即sinB4cosAsinC,由正弦定理得sinBsinC,故b4ccosA.由解得b4.题型二利用正弦、余弦定理证明三角形中的恒等式例2在ABC中,有(1)abcosCccosB;(2)bccosA
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 8.2 余弦定理二学案含答案 余弦 定理 答案
链接地址:https://www.77wenku.com/p-115522.html