习题课:数列求和 学案(含答案)
《习题课:数列求和 学案(含答案)》由会员分享,可在线阅读,更多相关《习题课:数列求和 学案(含答案)(7页珍藏版)》请在七七文库上搜索。
1、习题课数列求和学习目标1.能由简单的递推公式求出数列的通项公式.2.掌握数列求和的几种基本方法预习导引1基本求和公式(1)等差数列的前n项和公式:Snna1d.(2)等比数列前n项和公式:当q1时,Snna1;当q1时,Sn.2an与Sn的关系数列an的前n项和Sna1a2a3an,则an3拆项成差求和经常用到下列拆项公式:(1);(2);(3).题型一分组求和例1求和:Sn222.解当x1时,Sn222(x2x4x2n)2n2n2n;当x1时,Sn4n.综上知,Sn规律方法某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列的求和公式分别求和,从而得出原数列
2、的和跟踪演练1求数列1,1a,1aa2,1aa2an1,的前n项和Sn(其中a0)解当a1时,则ann,于是Sn123n.当a1时,an(1an)Snn(aa2an).Sn题型二错位相减法求和例2已知等差数列an的前3项和为6,前8项和为4.(1)求数列an的通项公式;(2)设bn(4an)qn1(q0,nN*),求数列bn的前n项和Sn.解(1)设an的公差为d,则由已知得即解得a13,d1.故an3(n1)(1)4n.(2)由(1)可得bnnqn1,于是Sn1q02q13q2(n1)qn2nqn1.若q1,将上式两边同乘以q,得:qSn1q12q23q3(n1)qn1nqn.将上面两式相减
3、得:(q1)Snnqn(1qq2qn1)nqn,于是Sn.若q1,则Sn123n.所以,Sn规律方法用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“SnqSn”的表达式若公比是个参数(字母),则应先对参数加以讨论,一般情况下分等于1和不等于1两种情况分别求和跟踪演练2已知等比数列an中,a12,a32是a2和a4的等差中项(1)求数列an的通项公式;(2)记bnanlog2an,求数列bn的前n项和Sn.解(1)设数列an的公比为q,由题知:2(a32)a2a4,q32
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 习题课:数列求和 学案含答案 习题 数列 求和 答案
链接地址:https://www.77wenku.com/p-115548.html