《习题课:简单的线性规划》课时作业(含答案)
《《习题课:简单的线性规划》课时作业(含答案)》由会员分享,可在线阅读,更多相关《《习题课:简单的线性规划》课时作业(含答案)(6页珍藏版)》请在七七文库上搜索。
1、习题课简单的线性规划基础过关1.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为()A.2000元B.2200元C.2400元D.2800元答案B解析设需使用甲型货车x辆,乙型货车y辆,运输费用z元,根据题意,得线性约束条件求线性目标函数z400x300y的最小值,解得当时,zmin2200(元).2.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的倍,且对每个项
2、目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为()A.36万元B.31.2万元C.30.4万元D.24万元答案B解析设投资甲项目x万元,投资乙项目y万元,可获得利润为z万元,则z0.4x0.6y.由图象知,目标函数z0.4x0.6y在A点取得最大值.ymax0.4240.63631.2(万元).3.已知实数x,y满足则的最大值为_.答案2解析画出不等式组对应的平面区域,表示平面区域上的点P(x,y)与原点的连线的斜率.A(1,2),B(3,0),02.4.某公司租赁甲、乙两
3、种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为_元.答案2300解析设需租赁甲种设备x台,乙种设备y台,则目标函数为z200x300y.作出其可行域,易知当x4,y5时,z200x300y有最小值2300元.5.画出不等式组表示的平面区域.解不等式x3表示直线x3左侧点的集合;不等式2yx,即x2y0表示直线x2y0上及左上方点的集合;不等式3x2y6,即3x2y60表示直线3x2y60上
4、及右上方点的集合;不等式3y0表示直线x3y90右下方点的集合.综上可得,不等式组表示的平面区域是如图所示的阴影部分.6.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?解设投资人分别用x万元、y万元投资甲、乙两个项目,由题意知目标函数zx0.5y.上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域.作直线l0:x0.5y0,并作平行于直线l0的一组直线x0.5yz,
5、zR,与可行域相交,其中有一条直线经过可行域上的M点,此时z取最大值.解方程组得x4,y6,此时z140.567(万元).70,当x4,y6时,z取得最大值.答投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.7.家具厂有方木料90m3,五合板600m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1m3,五合板2m2,生产每个书橱需要方木料0.2m3,五合板1m2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所得利
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 习题课:简单的线性规划 习题 简单 线性规划 课时 作业 答案
链接地址:https://www.77wenku.com/p-115580.html