第一章 立体几何初步 章末复习学案(含答案)
《第一章 立体几何初步 章末复习学案(含答案)》由会员分享,可在线阅读,更多相关《第一章 立体几何初步 章末复习学案(含答案)(16页珍藏版)》请在七七文库上搜索。
1、章末复习1.空间几何体的结构特征及其侧面积和体积名称定义图形侧面积体积多面体棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行S直棱柱侧ch,c为底面的周长,h为高VSh棱锥有一个面是多边形,其余各面都是有一个公共顶点的三角形S正棱锥侧ch,c为底面的周长,h为斜高VSh,h为高棱台用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分S正棱台侧(cc)h,c,c为底面的周长,h为斜高V(S上S下)h,h为高旋转体圆柱以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体S侧2rh,r为底面半径,h为高VShr2h圆锥以直角三角形的一条直角边所在直线为
2、旋转轴,其余两边旋转形成的面所围成的旋转体S侧rl,r为底面半径,h为高,l为母线VShr2h圆台用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分S侧(r1r2)l,r1,r2为底面半径,l为母线V(S上S下)h(rrr1r2)h球以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体S球面4R2,R为球的半径VR32.空间几何体的三视图与直观图(1)三视图是观察者从三个不同位置观察同一个空间几何体而画出的图形;它包括主视图、左视图、俯视图三种.画图时要遵循“长对正、高平齐、宽相等”的原则.注意三种视图的摆放顺序,在三视图中,分界线和可见轮廓线都用实线画出,不可见轮廓线用虚线画出.熟记常
3、见几何体的三视图.画组合体的三视图时可先拆,后画,再检验.(2)斜二测画法:主要用于水平放置的平面图形或立体图形的画法.它的主要步骤:画轴;画平行于x,y,z轴的线段分别为平行于x,y,z轴的线段;截线段:平行于x,z轴的线段的长度不变,平行于y轴的线段的长度变为原来的一半.三视图和直观图都是空间几何体的不同表示形式,两者之间可以互相转化. (3)转化思想在本章应用较多,主要体现在以下几个方面曲面化平面,如几何体的侧面展开,把曲线(折线)化为线段.等积变换,如三棱锥转移顶点等.复杂化简单,把不规则几何体通过分割,补体化为规则的几何体等.3.四个公理公理1:如果一条直线上的两点在一个平面内,那么
4、这条直线上所有的点都在这个平面内. 公理2:过不在同一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理4:平行于同一条直线的两条直线平行.4.直线与直线的位置关系5.平行的判定与性质(1)直线与平面平行的判定与性质判定性质定义定理图形条件aa,b,abaa,a,b结论abaab(2)面面平行的判定与性质判定性质定义定理图形条件a,b,abP,a,b,a,b,a结论aba(3)空间中的平行关系的内在联系6.垂直的判定与性质(1)直线与平面垂直图形条件结论判定ab,b(b为内的任意直线)aam,an,m,n,mnOaab,a
5、b性质a,baba,bab(2)平面与平面垂直的判定与性质定理文字语言图形语言符号语言判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面l(3)空间中的垂直关系的内在联系7.空间角(1)异面直线所成的角定义:设a,b是两条异面直线,经过空间任一点O作直线aa,bb,把a与b所成的锐角(或直角)叫作异面直线a,b所成的角(或夹角).范围:设两异面直线所成角为,则090.(2)二面角的有关概念二面角:从一条直线出发的两个半平面所组成的图形叫作二面角.二面角的平面角:以二面角的棱上任一点为端点,在两个
6、半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角.题型一由三视图求几何体的表面积与体积例1某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18 C.24 D.30答案C解析由俯视图可以判断该几何体的底面为直角三角形,由主视图和左视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,SABCAA143530,PB14336.故几何体ABCPA1C1的体积为30624.故选C.反思感悟(1)以三视图为载体的几何体的表面积与体积问题,关键是分析三视图确定几何体中各元素
7、之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和,组合体的表面积问题要注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.跟踪训练1已知某几何体的三视图如图所示,则该几何体的体积为()A. B.3 C. D.6答案B解析将三视图还原为直观图求体积.由三视图可知,此几何体(如图所示)是底面半径为1,高为4的圆柱被从母线的中点处截去了圆柱的,所以V1243.题型二平行问题例2如图所示,四边形ABCD是平行四边形,PB平面ABCD,MAPB,PB2MA.在线段PB上是否存在一点F,使平面AFC平面PMD?若存在,请确定点F的位置,并给出证明;若不存在,请说明理由.考点线、
8、面平行、垂直的综合应用题点平行与垂直的计算与探索性问题解当点F是PB的中点时,平面AFC平面PMD,证明如下:如图,连接AC和BD交于点O,连接FO,则PFPB.四边形ABCD是平行四边形,O是BD的中点.OFPD.又OF平面PMD,PD平面PMD,OF平面PMD.又MAPB,MAPB,PFMA,PFMA.四边形AFPM是平行四边形.AFPM.又AF平面PMD,PM平面PMD.AF平面PMD.又AFOFF,AF平面AFC,OF平面AFC.平面AFC平面PMD.反思感悟(1)证明线线平行的依据平面几何法(常用的有三角形中位线、平行四边形对边平行);公理4;线面平行的性质定理;面面平行的性质定理;
9、线面垂直的性质定理.(2)证明线面平行的依据定义;线面平行的判定定理;面面平行的性质.(3)证明面面平行的依据定义;面面平行的判定定理;垂直于同一直线的两平面平行;面面平行的传递性.跟踪训练2如图所示,四棱锥PABCD的底面是边长为8的正方形,四条侧棱长均为2.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH平面ABCD,BC平面GEFH.(1)证明:GHEF;(2)若EB2,求四边形GEFH的面积.考点线、面平行、垂直的综合应用题点平行与垂直的计算与探索性问题(1)证明因为BC平面GEFH,BC平面PBC,且平面PBC平面GEFHGH,所以GHBC.同理可证EFBC,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第一章 立体几何初步 章末复习学案含答案 立体几何 初步 复习 答案
文档标签
- 立体几何初步
- 章末复习学案含答案
- 立体几何
- 七年级几何初步
- 立体几何单元卷
- 第一章 立体几何初步单元检测卷含答案
- 第一章 立体几何初步 章末复习学案含答案
- 第一章 统计案例 章末复习 学案含答案
- 第一章 推理与证明 章末复习学案含答案
- 第一章 数列 章末复习 学案含答案
- 第一章 立体几何初步 章末复习课 学案含答案
- 第一章 立体几何初步章末检测试卷含答案
- 第一章 导数及其应用 章末复习学案含答案
- 第一章 集合 章末复习 学案含答案
- 第1章 立体几何初步
- 第1章 立体几何初步 章末复习 学案含答案
- 第一章 立体几何初步 章末检测卷含答案
- 第6章立体几何初步章末复习 学案含答案
- 第6章立体几何初步
- 第一章 立体几何初步 章末复习课后作业含答案
链接地址:https://www.77wenku.com/p-115603.html