§6 指数函数、幂函数、对数函数增长的比较 学案(含答案)
《§6 指数函数、幂函数、对数函数增长的比较 学案(含答案)》由会员分享,可在线阅读,更多相关《§6 指数函数、幂函数、对数函数增长的比较 学案(含答案)(8页珍藏版)》请在七七文库上搜索。
1、6指数函数、幂函数、对数函数增长的比较学习目标1.了解三种函数的增长特征.2.初步认识“直线上升”“指数爆炸”和“对数增长”.3.尝试函数模型的简单应用.知识点一同类函数增长特点当a1时,指数函数yax是增函数,并且当a越大时,其函数值的增长就越快.当a1时,对数函数ylogax是增函数,并且当a越小时,其函数值的增长就越快.当x0,n0时,幂函数yxn是增函数,并且当x1时,n越大其函数值的增长就越快.知识点二指数函数、幂函数、对数函数的增长差异一般地,在区间(0,)上,尽管指数函数yax(a1)、幂函数yxn(n0)与对数函数ylogax(a1)都是增函数,但它们的增长速度不同,而且不在同
2、一个档次上.随着x的增大,yax(a1)的增长速度越来越快,会远远超过幂函数yxn(n0)的增长速度,而对数函数ylogax(a1)的增长速度越来越慢,因此总会存在一个x0,当xx0时,就有logaxxn1,n0).1.先有实际问题,后有模型.()2.一个好的函数模型,既能与现有数据高度符合,又能很好地推演和预测.()3.增长速度越来越快的一定是指数函数模型.()4.由于指数函数模型增长速度最快,所以对于任意xR恒有axx2(a1).()题型一根据图像判断函数的增长速度例1函数f(x)2x和g(x)x3的图像如图所示.设两函数的图像交于点A(x1,y1),B(x2,y2),且x1g(1),f(
3、2)g(2),f(9)g(10),1x12,9x210,x16x2.从图像上可以看出,当x1xx2时,f(x)g(x),f(6)x2时,f(x)g(x),f(2 019)g(2 019).又g(2 019)g(6),f(2 019)g(2 019)g(6)f(6).反思感悟判断函数的增长速度,一个是从x增加相同量时,函数值的增长量的变化;另一方面,也可从函数图像的变化,图像越陡,增长越快.跟踪训练1函数f(x)lg x,g(x)0.3x1的图像如图所示.(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;(2)以两图像交点为分界点,对f(x),g(x)的大小进行比较.考点题点解(1)C
4、1对应的函数为g(x)0.3x1,C2对应的函数为f(x)lg x.(2)当0xf(x);当x1xg(x);当xx2时,g(x)f(x);当xx1或xx2时,f(x)g(x).题型二函数增长模型的应用例2假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?考点题点解设第x天所得回报是y元,则方案一可以用函数y40(xN)进行描述;方案二可以用函数y10x(xN)进行描述;方案三可以用函数y0.42x1(xN)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- §6 指数函数、幂函数、对数函数增长的比较 学案含答案 指数函数 函数 对数 增长 比较 答案
链接地址:https://www.77wenku.com/p-115913.html