2018-2019学年广东省汕头市潮阳区高二(下)期末数学试卷(理科)含详细解答
《2018-2019学年广东省汕头市潮阳区高二(下)期末数学试卷(理科)含详细解答》由会员分享,可在线阅读,更多相关《2018-2019学年广东省汕头市潮阳区高二(下)期末数学试卷(理科)含详细解答(21页珍藏版)》请在七七文库上搜索。
1、2018-2019学年广东省汕头市潮阳区高二(下)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,满分60分在每小题给出的四个选项中,只有一项是符合题目要求的.1(5分)已知集合Mx|4x2,Nx|x2x60,则MN()Ax|4x3Bx|4x2Cx|2x2Dx|2x32(5分)已知i是虚数单位,若,则()ABCD3(5分)在5张扑克牌中有3张“红心”和2张“方块”,如果不放回地依次抽取2张牌,则在第一次抽到“红心”的条件下,第二次抽到“红心”的概率为()ABCD4(5分)已知函数f(x)的导函数为f(x),且满足f(x)2xf(1)+lnx,则f(1)()AeB1C1De5(5分
2、)设平面向量(1,2),(2,y),若,则|2|等于()A4B5CD6(5分)已知alog20.2,b20.2,c0.20.3,则()AabcBacbCcabDbca7(5分)曲线y与直线y5x围成的平面图形的面积为()ABCD8(5分)记Sn为等差数列an的前n项和已知S40,a55,则()Aan2n5Ban3n10CSn2n28nDSnn22n9(5分)已知函数f(x)sin(2x+)的图象关于直线x对称,则可能取值是()ABCD10(5分)(x2+x+y)5的展开式中,x5y2的系数为()A10B20C30D6011(5分)双曲线C:1(a0,b0)的一条渐近线的倾斜角为130,则C的离
3、心率为()A2sin40B2cos40CD12(5分)若函数至少有1个零点,则实数a的取值范围是()A(,1)B0,1)CD二、填空题:本大题共4小题,每小题5分,满分20分答案填在答题卷上相应的位置上13(5分)曲线yx2+lnx在点(1,1)处的切线方程为 14(5分)ABC的内角A,B,C的对边分别为a,b,c若,则ABC的面积为 15(5分)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束)根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则
4、甲队以4:1获胜的概率是 16(5分)从抛物线y24x上一点P引抛物线准线的垂线,垂足为M,且|PM|5,设抛物线的焦点为F,则MPF的面积为 三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第1721题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答(一)必考题:共60分17(12分)在ABC中,角A,B,C所对的边分别是a,b,c,已知2cosC(acosB+bcosA)c(1)求C;(2)若c,ABC的面积为,求ABC的周长18(12分)如图,三棱柱ABCA1B1C1中,A1CB1A1,ABAA1,BAA160(1)求证:AC
5、BC;(2)若平面ABC平面ABB1A1,且ABBC,求二面角A1CC1B的正弦值19(12分)某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训,甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如下表,其中第一、二周达标的员工评为优秀第一周第二周第三周第四周甲组2025105乙组8162016(1)在甲组内任选两人,求恰有一人优秀的概率;(2)每个员工技能测试是否达标相互独立,以频率作为概率(i)设公司员工在方式一、二下的受训时间分别为1、2,
6、求1、2的分布列,若选平均受训时间少的,则公司应选哪种培训方式?(ii)按(i)中所选方式从公司任选两人,求恰有一人优秀的概率20(12分)已知椭圆的左右焦点分別为F1、F2,其离心率为,短轴端点与焦点构成四边形的面积为且过点p(1,)(1)求椭圆C的方程;(2)过定点Q(2,3)的直线与椭圆C交于两点M、N,直线PM、PN的斜率为k1、k2,求证:k1+k2为定值21(12分)已知f(x)alnx+x2x(aR)()若x2是函数f(x)的一个极值点,求f(x)的最小值;()对x(e,+),f(x)ax0恒成立,求a的取值范围(二)选考题:共10分请考生在第22、23题中任选一题作答如果多做,
7、则按所做的第一题记分选修4-4:坐标系与参数方程22(10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为4cos,直线l的极坐标方程为,两条曲线交于A,B两点(1)求曲线C1和直线l的普通方程;(2)M曲线(为参数)上的动点,求MAB的面积的最小值选修4-5:不等式选讲23已知函数f(x)|2xa|+|x+|(1)当a2时,解不等式f(x)1;(2)求函数g(x)f(x)+f(x)的最小值2018-2019学年广东省汕头市潮阳区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分在每小题给出的四个
8、选项中,只有一项是符合题目要求的.1(5分)已知集合Mx|4x2,Nx|x2x60,则MN()Ax|4x3Bx|4x2Cx|2x2Dx|2x3【分析】利用一元二次不等式的解法和交集的运算即可得出【解答】解:Mx|4x2,Nx|x2x60x|2x3,MNx|2x2故选:C【点评】本题考查了一元二次不等式的解法和交集的运算,属基础题2(5分)已知i是虚数单位,若,则()ABCD【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案【解答】解:,故选:D【点评】本题考查了复数的运算性质和共轭复数的概念,属基础题3(5分)在5张扑克牌中有3张“红心”和2张“方块”,如果不放回地依次抽
9、取2张牌,则在第一次抽到“红心”的条件下,第二次抽到“红心”的概率为()ABCD【分析】此是一个条件概率模型的题,可以求出事件A:不放回地依次抽取2张牌,抽到“红心”的概率,事件B:抽到一个“红心”的概率,再用条件概率公式求出概率【解答】解:5张扑克牌中有3张“红心”和2张“方块”,由题意事件A:不放回地依次抽取2张牌,抽到“红心”的概率,P(A);事件B:抽到一个“红心”的概率,再用条件概率公式求出概率P(AB),在第一次抽到“红心”的条件下,第二次抽到“红心”的概率为:P(B|A);故选:D【点评】本题考查条件概率计算公式,解题的关键是正确理解事事件A事件B发生的概率及P(B|A),中档题
10、4(5分)已知函数f(x)的导函数为f(x),且满足f(x)2xf(1)+lnx,则f(1)()AeB1C1De【分析】已知函数f(x)的导函数为f(x),利用求导公式对f(x)进行求导,再把x1代入,即可求解;【解答】解:函数f(x)的导函数为f(x),且满足f(x)2xf(1)+lnx,(x0)f(x)2f(1)+,把x1代入f(x)可得f(1)2f(1)+1,解得f(1)1,故选:B【点评】此题主要考查导数的加法与减法的法则,解决此题的关键是对f(x)进行正确求导,把f(1)看成一个常数,就比较简单了;5(5分)设平面向量(1,2),(2,y),若,则|2|等于()A4B5CD【分析】利
11、用向量共线定理即可得出y,从而计算出的坐标,利用向量模的计算公式即可得出【解答】解:,22y0,解得y42(1,2)(2,4)(4,8),|2|故选:D【点评】熟练掌握向量共线定理、向量模的计算公式是解题的关键6(5分)已知alog20.2,b20.2,c0.20.3,则()AabcBacbCcabDbca【分析】由指数函数和对数函数的单调性易得log20.20,20.21,00.20.31,从而得出a,b,c的大小关系【解答】解:alog20.2log210,b20.2201,00.20.30.201,c0.20.3(0,1),acb,故选:B【点评】本题考查了指数函数和对数函数的单调性,增
12、函数和减函数的定义,属基础题7(5分)曲线y与直线y5x围成的平面图形的面积为()ABCD【分析】联立,解得两曲线的交点为(1,4),(4,1),所以两曲线围成的面积为y5x在1,4上的积分【解答】解:如图:联立,解得,两曲线的交点坐标为(1,4),(4,1),所以两曲线围成的图形的面积为S(5x4lnx)|故选:D【点评】本题考查了定积分,找到积分区间和被积函数是解决此类问题的关键本题属于基础题8(5分)记Sn为等差数列an的前n项和已知S40,a55,则()Aan2n5Ban3n10CSn2n28nDSnn22n【分析】根据题意,设等差数列an的公差为d,则有,求出首项和公差,然后求出通项
13、公式和前n项和即可【解答】解:设等差数列an的公差为d,由S40,a55,得,an2n5,故选:A【点评】本题考查等差数列的通项公式以及前n项和公式,关键是求出等差数列的公差以及首项,属于基础题9(5分)已知函数f(x)sin(2x+)的图象关于直线x对称,则可能取值是()ABCD【分析】根据正弦函数图象的对称轴,结合题意求得的可能取值【解答】解:函数f(x)sin(2x+),令2x+k+,kZ;f(x)的图象关于直线x对称,2+k+,kZ;解得k+,kZ;的可能取值是故选:C【点评】本题考查了正弦函数的图象与对称性应用问题,是基础题10(5分)(x2+x+y)5的展开式中,x5y2的系数为(
14、)A10B20C30D60【分析】利用展开式的通项,即可得出结论【解答】解:(x2+x+y)5的展开式的通项为Tr+1,令r2,则(x2+x)3的通项为,令6k5,则k1,(x2+x+y)5的展开式中,x5y2的系数为30故选:C【点评】本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键11(5分)双曲线C:1(a0,b0)的一条渐近线的倾斜角为130,则C的离心率为()A2sin40B2cos40CD【分析】由已知求得,化为弦函数,然后两边平方即可求得C的离心率【解答】解:双曲线C:1(a0,b0)的渐近线方程为y,由双曲线的一条渐近线的倾斜角为130,得,则,得,e故选:D【点评
15、】本题考查双曲线的简单性质,考查同角三角函数基本关系式的应用,是基础题12(5分)若函数至少有1个零点,则实数a的取值范围是()A(,1)B0,1)CD【分析】设,由题意,函数ya的图象与函数的图象至少有一个交点,利用数形结合思想,通过观察图象即可求得实数a的取值范围【解答】解:设,则原函数等价为g(t)lnta|t|lntat,令g(t)0,则,由题意,函数ya与函数的图象至少有一个交点,令h(t)0,解得te,当x(0,e)时,h(t)0,函数h(t)单调递增,当x(e,+)时,h(t)0,函数h(t)单调递减,且,t0时,h(t),t+时,h(t)0作草图如下,由图可知,要使函数ya与函
16、数至少有一个交点,则,故选:C【点评】本题考查导数的运用,考查换元法及数形结合思想的运用,难度不大解决这类题的方法一般是分离参数,利用数形结合,研究两个简单函数的图象的位置关系即可二、填空题:本大题共4小题,每小题5分,满分20分答案填在答题卷上相应的位置上13(5分)曲线yx2+lnx在点(1,1)处的切线方程为3xy20【分析】求出函数的导数,求得切线的斜率,再由点斜式方程,即可得到所求切线的方程【解答】解:yx2+lnx的导数为y2x+,则在点(1,1)处的切线斜率为k3,即有在点(1,1)处的切线方程为y13(x1),即为3xy20故答案为:3xy20【点评】本题考查导数的运用:求切线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 2019 学年 广东省 汕头市 潮阳 区高二 期末 数学试卷 理科
链接地址:https://www.77wenku.com/p-116509.html