二次函数中动点与特殊四边形综合问题解析与训练
《二次函数中动点与特殊四边形综合问题解析与训练》由会员分享,可在线阅读,更多相关《二次函数中动点与特殊四边形综合问题解析与训练(12页珍藏版)》请在七七文库上搜索。
1、 九年级数学专项训练二次函数二次函数中动点与特殊四边形综合问题解析与训练一、知识准备: 抛物线与直线形的结合表形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊四边形,有以下常风的基本形式(1)抛物线上的点能否构成平行四边形(2)抛物线上的点能否构成矩形,菱形,正方形(3)抛物线上的点能否构成梯形。特殊四边形的性质与是解决这类问题的基础,而待定系数法,数形结合,分类讨论是解决这类问题的关键二、例题精析【抛物线上的点能否构成平行四边形】例一、如图,抛物线与直线交于两点,其中点在轴上,点的坐标为。点是轴右侧的抛物线上一动点,过点作轴于点,交于点.(1)求抛物线的解析式;(2)若点的
2、横坐标为,当为何值时,以为顶点的四边形是平行四边形?请说明理由。(3)若存在点,使,请直接写出相应的点的坐标【解答】(1)直线经过点, 抛物线经过点, 抛物线的解析式为(2)点的横坐标为且在抛物线上 ,当时,以为顶点的四边形是平行四边形 当时,解得:即当或时,四边形是平行四边形 当时,解得:(舍去)即当时,四边形是平行四边形(3)如图,当点在上方且时,作,则 PMFCNF, 又 解得:,(舍去) 。同理可以求得:另外一点为【抛物线上的点能否构成矩形,菱形,正方形】例二(2013荆州)如图,已知:如图,直线y=x+与x轴、y轴分别交于A、B两点,两动点D、E分别从A、B两点同时出发向O点运动(运
3、动到O点停止);对称轴过点A且顶点为M的抛物线y=a(xk)2+h(a0)始终经过点E,过E作EGOA交抛物线于点G,交AB于点F,连结DE、DF、AG、BG设D、E的运动速度分别是1个单位长度/秒和个单位长度/秒,运动时间为t秒(1)用含t代数式分别表示BF、EF、AF的长;(2)当t为何值时,四边形ADEF是菱形?判断此时AFG与AGB是否相似,并说明理由;(3)当ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式考点:二次函数综合题分析:(1)首先求出一次函数y=x+与坐标轴交点A、B的坐标,然后解直角三角形求出BF、EF、AF的长;(2)由EFAD,且EF=AD=t,
4、则四边形ADEF为平行四边形,若ADEF是菱形,则DE=AD=t由DE=2OE,列方程求出t的值;如答图1所示,推出BAG=GAF,ABG=AGF=30,证明AFG与AGB相似(3)当ADF是直角三角形时,有两种情形,需要分类讨论:若ADF=90,如答图2所示首先求出此时t的值;其次求出点G的坐标,利用待定系数法求出直线BG的解析式,得到点M的坐标;最后利用顶点式和待定系数法求出抛物线的解析式;若AFD=90,如答图3所示解题思路与相同解答:解:(1)在直线解析式y=x+中,令x=0,得y=;令y=0,得x=1A(1,0),B(0,),OA=1,OB=tanOAB=,OAB=60,AB=2OA
5、=2EGOA,EFB=OAB=60EF=t,BF=2EF=2t,AF=ABBF=22t(2)EFAD,且EF=AD=t,四边形ADEF为平行四边形若ADEF是菱形,则DE=AD=t由DE=2OD,即:t=2(1t),解得t=t=时,四边形ADEF是菱形此时AFG与AGB相似理由如下:如答图1所示,连接AE,四边形ADEF是菱形,DEF=DAF=60,AEF=30由抛物线的对称性可知,AG=AE,AGF=AEF=30在RtBEG中,BE=,EG=2,tanEBG=,EBG=60,ABG=EBGEBF=30在AFG与AGB中,BAG=GAF,ABG=AGF=30,AFGAGB(3)当ADF是直角三
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 中动点 特殊 四边形 综合 问题 解析 训练
链接地址:https://www.77wenku.com/p-119134.html