2018-2019学年浙江省宁波市慈溪市高二(下)期末数学试卷(含详细解答)
《2018-2019学年浙江省宁波市慈溪市高二(下)期末数学试卷(含详细解答)》由会员分享,可在线阅读,更多相关《2018-2019学年浙江省宁波市慈溪市高二(下)期末数学试卷(含详细解答)(17页珍藏版)》请在七七文库上搜索。
1、2018-2019学年浙江省宁波市慈溪市高二(下)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的1(4分)已知集合A1,0,1,By|y2x1,xA,则AB()A1,0,1B1,1C0D2(4分)设i是虚数单位,若复数z满足(1+i)z2i,则z()A1+iB1iC1+iD1i3(4分)已知cba0,且a+b+c21,则a的取值范围为()Aa9Ba8Ca7Da74(4分)A、B、C、D、E、F六名同学站成一排照相,其中A、B两人相邻的不同排法数是()A720 种B360 种C240 种D120 种5(4分)对于实数a,b,则“l
2、og2019alog2019b”是“2019a2019b”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件6(4分)已知袋中有编号为1、2、3、8的八只相同小球,现从中任取3只,则所取3只球的最大编号是5的概率等于()ABCD7(4分)已知,为锐角,且tan1,若tan24tan(),则tan(+)的最大值为()ABCD8(4分)已知(23x2x2)5a0+a1x+a2x2+a10x10,则a0+a1+a10()A240B186C240D3049(4分)已知二次函数f(x)x2axb在区间1,1内有两个零点,则H|a2+2b|的取值范围为()A(0,2B(0,2C(0,1
3、D(0,310(4分)设数列an的前n项和为Sn,(1)(nN*),且a1,则()A2019B2019C2020D2020二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11(6分)若函数f(x)+2x,则f(x)的定义域是 ,值域是 12(6分)已知随机变量的分布列如表,x01234P0.20.20.3a0.1则a ,E() 13(6分)A、B、C三人将参加某项测试,三人能否达标互不影响,已知他们能达标的概率分别是,则三人都能达标的概率是 ,三人中至少有一人能达标的概率是 14(6分)已知
4、函数f(x)sin(x)+(0),若函数f(x)的最小正周期为,则 ;若2,则函数yf(x)的最小正周期为 15(4分)设函数f(x)(2x2ex)cos(2x+)(e为自然对数的底数)的导函数为f(x),则f(0) 16(4分)已知变量x,y满足约束条件,设Z的最大值和最小值分别是M和m,则M+m 17(4分)已知非零向量,满足:(2)(2)0,且不等式|+|+|恒成立,则实数的最大值为 三、解答题:本大题共5小题,共74分解答应写出文字说明、证明过程或演算步骤18(14分)在ABC中,内角A,B,C的对边分别是a,b,c
5、,且满足:(b2+c2a2)sinCc2sin B()求角A的大小;()若a1,求b+c的最大值19(15分)已知数列an满足:an+14|an|(nN*)()若a10,且a1,a2,a3成等比数列,求a1;()若a14,且a1,a2,a3,a4成等差数列,求a120(15分)如图,多面体PABCD,平面ABCD平面PBC,DCBC,DABC,BCP90,M是AP的中点,N是DP上的点()若MN平面PBC,证明:N是DP的中点;()若CBCDCP3,AD1,求二面角ABPC的平面角的余弦值21(15分)已知椭圆C:+1(a0,b0)的长轴长为4,离心率为()求椭圆C的方程;()当ab时,设M(
6、m,0)(mR),过M作直线l交椭圆C于P、Q两点,记椭圆C的左顶点为A,直线AP,AQ的斜率分别为k1,k2,且k1k2,求实数m的值22(15分)已知函数f(x)lnx,e是自然对数的底数()若过坐标原点O作曲线yf(x)的切线l,求切线l的方程;()当a0时,不等式f(x)ax+b(bR)恒成立,求f (2+)的最小值2018-2019学年浙江省宁波市慈溪市高二(下)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的1(4分)已知集合A1,0,1,By|y2x1,xA,则AB()A1,0,1B1,1C0D【分
7、析】可求出集合B,然后进行交集的运算即可【解答】解:B1,1,3;AB1,1故选:B【点评】考查列举法、描述法的定义,元素与集合的关系,以及交集的运算2(4分)设i是虚数单位,若复数z满足(1+i)z2i,则z()A1+iB1iC1+iD1i【分析】(1+i)z2i,可得(1i)(1+i)z2i(1i),化简整理即可得出【解答】解:(1+i)z2i,(1i)(1+i)z2i(1i),化为:2z2(i+1),z1+i故选:C【点评】本题考查了复数的运算法则、共轭虚数的定义,考查了推理能力与技能数列,属于基础题3(4分)已知cba0,且a+b+c21,则a的取值范围为()Aa9Ba8Ca7Da7【
8、分析】由21a+b+ca+a+a3a可得a的范围【解答】解:cba0,且a+b+c21,21a+b+ca+a+a3a,a7故选:D【点评】本题考查了不等式的基本性质,属基础题4(4分)A、B、C、D、E、F六名同学站成一排照相,其中A、B两人相邻的不同排法数是()A720 种B360 种C240 种D120 种【分析】根据题意,分2步进行分析:,将AB看成一个整体,考虑2人之间的顺序,将这个整体与C、D、E、F四人全排列,由分步计数原理计算可得答案【解答】解:根据题意,分2步进行分析:,将AB看成一个整体,考虑2人之间的顺序,有A222种情况,将这个整体与C、D、E、F四人全排列,有A5512
9、0种排法,则A、B两人相邻的不同排法有2120240种;故选:C【点评】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题5(4分)对于实数a,b,则“log2019alog2019b”是“2019a2019b”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【分析】由充分必要条件,先求出“log2019alog2019b”与“2019a2019b”的充要条件,再判断即可得解【解答】解:因为“log2019alog2019b”的充要条件为“ab0“,“2019a2019b”的充要条件为“ab“,即“log2019alog2019b”是“2019a2019b”的充
10、分不必要条件,故选:A【点评】本题考查了充分必要条件,属简单题6(4分)已知袋中有编号为1、2、3、8的八只相同小球,现从中任取3只,则所取3只球的最大编号是5的概率等于()ABCD【分析】基本事件总数n56,所取3只球的最大编号是5包含的基本事件个数m6,由此能求出所取3只球的最大编号是5的概率【解答】解:袋中有编号为1、2、3、8的八只相同小球,现从中任取3只,基本事件总数n56,所取3只球的最大编号是5包含的基本事件个数m6,所取3只球的最大编号是5的概率为p故选:B【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题7(4分)已知,为锐角,且tan1
11、,若tan24tan(),则tan(+)的最大值为()ABCD【分析】两角和差的三角公式化简tan(+)tan2(),再利用基本不等式求得它的最大值【解答】解:,为锐角,且tan1,(0,),若tan24tan()0,则tan(+)tan2(),当且仅当tan() 时,取等号,故选:B【点评】本题主要考查两角和差的三角公式、基本不等式的应用,属于基础题8(4分)已知(23x2x2)5a0+a1x+a2x2+a10x10,则a0+a1+a10()A240B186C240D304【分析】令x0可得a032;将(23x2x2)5变成(2x+1)5(x+2)5,再利用通项公式可得【解答】解:在(23x
12、2x2)5a0+a1x+a2x2+a10x10中,令x0得a032,(23x2x2)5(2x+1)5(x+2)5,a1C(2)1C25+C(2)0C24240a10C(2)5C2032,a0+a1+a1032240+32240故选:A【点评】本题考查了二项式定理,属中档题9(4分)已知二次函数f(x)x2axb在区间1,1内有两个零点,则H|a2+2b|的取值范围为()A(0,2B(0,2C(0,1D(0,3【分析】列出满足条件约束条件,画出满足条件的可行域,进而可得答案【解答】解:由题意,要使函数f(x)x2axb在区间1,1上有两个零点,只要,其对应的平面区域如下图所示:则当a0,b0时,
13、a2+2b取最小值0,当a0,b1时,a2+2b取最大值2,当a2,b1时,a2+2b取最大值2,所以|a2+2b|的取值范围为(0,2;故选:A【点评】本题考查了函数零点的分布,线性规划,关键是结合二次函数图象等价得到不等式组10(4分)设数列an的前n项和为Sn,(1)(nN*),且a1,则()A2019B2019C2020D2020【分析】(1)(nN*),化为:1利用等差数列的通项公式即可得出【解答】解:(1)(nN*),化为:1数列是等差数列,首项为2,公差为12(n1)1n则120192020故选:D【点评】本题考查了数列递推关系、等差数列的通项公式,考查了推理能力与计算能力,属于
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 2019 学年 浙江省 宁波市 慈溪市 期末 数学试卷
链接地址:https://www.77wenku.com/p-119325.html