2020苏科版中考数学大一轮新素养突破提分专练07:以四边形为背景的计算题与证明题(含答案)
《2020苏科版中考数学大一轮新素养突破提分专练07:以四边形为背景的计算题与证明题(含答案)》由会员分享,可在线阅读,更多相关《2020苏科版中考数学大一轮新素养突破提分专练07:以四边形为背景的计算题与证明题(含答案)(14页珍藏版)》请在七七文库上搜索。
1、提分专练(七)以四边形为背景的计算题与证明题|类型1|特殊四边形的综合1.2017酒泉 如图T7-1,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.图T7-1|类型2|四边形的折叠2.2019金华 将一张正方形纸片按如图T7-2步骤,通过折叠得到图,再沿虚线剪去一个角,展开铺平后得到图,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF的面积相等,则FMGF的值是()图T7-2A.5-22B.2-1C.12D.223.2019杭州 如图T7-3,把某矩形纸片AB
2、CD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A点,D点的对称点为D点,若FPG=90,AEP的面积为4,DPH的面积为1,则矩形ABCD的面积等于.图T7-34.2019青岛 如图T7-4,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4 cm,则CF的长是 cm.图T7-45.2016连云港 如图T7-5,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N.若AD=2,则
3、MN=.图T7-56.2014淮安 如图T7-6,在ABC中,AD平分BAC,将ABC折叠,使点A与点D重合,展开后折痕分别交AB,AC于点E,F,连接DE,DF.求证:四边形AEDF是菱形.图T7-6 7.如图T7-7,在矩形纸片ABCD中,已知AB=1,BC=3,点E在边CD上移动,连接AE,将四边形ABCE沿直线AE折叠,得到四边形ABCE,点B,C的对应点分别为点B,C.(1)当BC恰好经过点D时(如图),求线段CE的长;(2)若BC分别交边AD,CD于点F,G,且DAE=22.5(如图),求DFG的面积;(3)在点E从点C移动到点D的过程中,求点C运动的路径长.图T7-7 8.201
4、7威海 如图T7-8,四边形ABCD为一个矩形纸片,AB=3,BC=2,动点P自D点出发沿DC方向运动至C点后停止.ADP以直线AP为轴翻折,点D落到点D1的位置.设DP=x,AD1P与原纸片重叠部分的面积为y.(1)当x为何值时,直线AD1过点C?(2)当x为何值时,直线AD1过BC的中点E?(3)求出y与x的函数关系式.图T7-8|类型3|四边形的平移、旋转9.2019绍兴 如图T7-9,正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D,在点E从点A移动到点B的过程中,矩形ECFG的面积()图T7-9A.先变大后变小B.先变小后变大C.一直变大D.保持不变10.
5、问题:如图T7-10,点E,F分别在正方形ABCD的边BC,CD上,EAF=45,试判断BE,EF,FD之间的数量关系.【发现证明】小聪把ABE绕点A逆时针旋转90至ADG,从而发现EF=BE+FD,请你利用图证明上述结论.【类比引申】如图,四边形ABCD中,BAD90,AB=AD,B+D=180,点E,F分别在边BC,CD上,则当EAF与BAD满足关系时,仍有EF=BE+FD.【探究应用】如图,在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,B=60,ADC=120,BAD=150,道路BC,CD上分别有景点E,F,且AEAD,DF=40(3-1)米,现要在E,F
6、之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:21.41,31.73).图T7-1011.2019德州 (1)如图T7-11,菱形AEGH的顶点E,H在菱形ABCD的边上,且BAD=60,请直接写出HDGCEB的结果(不必写计算过程).(2)将图中的菱形AEGH绕点A旋转一定角度,如图,求HDGCEB.(3)把图中的菱形都换成矩形,如图,且ADAB=AHAE=12,此时HDGCEB的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程);若无变化,请说明理由.图T7-11【参考答案】1.解:(1)证明:四边形ABCD是平行四边形,O是BD的中点,
7、ABDC,OB=OD,OBE=ODF,又BOE=DOF,BOEDOF(ASA),EO=FO,四边形BEDF是平行四边形.(2)当四边形BEDF是菱形时,设BE=x则DE=x,AE=6-x,在RtADE中,DE2=AD2+AE2,x2=42+(6-x)2,x=133,S菱形BEDF=BEAD=1334=523=12BDEF,又BD=AB2+AD2=62+42=213,12213EF=523,EF=4133.2.A解析连接EG,FH交于点O,由题意得OGF是等腰直角三角形,OF=22GF.正方形EFGH与五边形MCNGF的面积相等,(OF+FM)2=54GF2,22GF+FM=52GF,FM=52
8、GF-22GF,FMGF=5-22.故选A.3.2(5+35)解析四边形ABCD是矩形,AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA=AB=x,PD=CD=x,AEP的面积为4,DPH的面积为1,AE=4DH,设DH=a,则AE=4a,易求AEPDPH,DHPA=PDEA,ax=x4a,x2=4a2,x=2a或x=-2a(舍去),PA=PD=2a,12a2a=1,a=1或a=-1(舍去),x=2,AB=CD=2,PE=22+42=25,PH=12+22=5,AD=4+25+5+1=5+35,矩形ABCD的面积=2(5+35).故答案为2(5+35).4.(6-25)解析由勾股定理
9、得AE=25 cm,根据题意得GE=(25-4)cm,设BF=x cm,则FC=(4-x) cm,所以(25-4)2+x2=22+(4-x)2,解得x=25-2,所以CF=(6-25)cm.5.13解析设DH=x,则CH=2-x,再根据翻折变换的性质得出DE,EH,然后利用勾股定理列出方程求出x,再根据相似三角形的性质,可得NE的长,根据线段的和、差,可得答案.设DH=x,则CH=2-x.由翻折的性质,知DE=1,EH=CH=2-x,在RtDEH中,DE2+DH2=EH2,即12+x2=(2-x)2,解得x=34,EH=2-x=54.MEH=C=90,AEN+DEH=90,ANE+AEN=90
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 苏科版 中考 数学 一轮 素养 突破 提分专练 07 四边形 背景 算题 证明 答案
链接地址:https://www.77wenku.com/p-119966.html