2020版高考数学大一轮复习 第二章 函数概念与基本初等函数2.4 幂函数与二次函数
《2020版高考数学大一轮复习 第二章 函数概念与基本初等函数2.4 幂函数与二次函数》由会员分享,可在线阅读,更多相关《2020版高考数学大一轮复习 第二章 函数概念与基本初等函数2.4 幂函数与二次函数(14页珍藏版)》请在七七文库上搜索。
1、2.4幂函数与二次函数最新考纲考情考向分析1.了解幂函数的概念2.结合函数yx,yx2,yx3,y,y的图象,了解它们的变化情况3.理解并掌握二次函数的定义、图象及性质4.能用二次函数、方程、不等式之间的关系解决简单问题.以幂函数的图象与性质的应用为主,常与指数函数、对数函数交汇命题;以二次函数的图象与性质的应用为主,常与方程、不等式等知识交汇命题,着重考查函数与方程、转化与化归及数形结合思想,题型一般为选择、填空题,中档难度.1幂函数(1)幂函数的定义一般地,形如yx(R)的函数称为幂函数,其中x是自变量,是常数(2)常见的五种幂函数的图象和性质比较函数yxyx2yx3yyx1图象性质定义域
2、RRRx|x0x|x0值域Ry|y0Ry|y0y|y0奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R上单调递增在(,0上单调递减;在(0,)上单调递增在R上单调递增在0,)上单调递增在(,0)和(0,)上单调递减公共点(1,1)2二次函数的图象和性质解析式f(x)ax2bxc(a0)f(x)ax2bxc(a0且0.题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)二次函数yax2bxc(a0),xa,b的最值一定是.()(2)在yax2bxc(a0)中,a决定了图象的开口方向和在同一直角坐标系中的开口大小()(3)函数y是幂函数()(4)如果幂函数的图象与坐标轴相交,则
3、交点一定是原点()(5)当n0时,幂函数yxn是定义域上的减函数()题组二教材改编2已知幂函数f(x)kx的图象过点,则k等于()A. B1 C. D2答案C解析由幂函数的定义,知k1,.k.3已知函数f(x)x24ax在区间(,6)内单调递减,则a的取值范围是()Aa3 Ba3Ca3 Da3答案D解析函数f(x)x24ax的图象是开口向上的抛物线,其对称轴是x2a,由函数在区间(,6)内单调递减可知,区间(,6)应在直线x2a的左侧,2a6,解得a3,故选D.题组三易错自纠4幂函数f(x)(aZ)为偶函数,且f(x)在区间(0,)上是减函数,则a等于()A3 B4 C5 D6答案C解析因为a
4、210a23(a5)22,f(x)(aZ)为偶函数,且在区间(0,)上是减函数,所以(a5)221,函数y2x26x3在1,1上单调递减,ymin2631.6设二次函数f(x)x2xa(a0),若f(m)”“解析f(x)x2xa图象的对称轴为直线x,且f(1)0,f(0)0,而f(m)0,m(0,1),m10.题型一幂函数的图象和性质1若幂函数的图象经过点,则它的单调递增区间是()A(0,) B0,)C(,) D(,0)答案D解析设f(x)x,则2,2,即f(x)x2,它是偶函数,单调递增区间是(,0)故选D.2若四个幂函数yxa,yxb,yxc,yxd在同一坐标系中的图象如图所示,则a,b,
5、c,d的大小关系是()Adcba BabcdCdcab Dabdc答案B解析由幂函数的图象可知,在(0,1)上幂函数的指数越大,函数图象越接近x轴,由题图知abcd,故选B.3已知幂函数f(x)(n22n2)(nZ)的图象关于y轴对称,且在(0,)上是减函数,则n的值为()A3 B1 C2 D1或2答案B解析由于f(x)为幂函数,所以n22n21,解得n1或n3,经检验只有n1符合题意,故选B.4(2018阜新模拟)若(a1)(32a),则实数a的取值范围是_答案(,1)解析不等式(a1)32a0或32aa10或a1032a,解得a1或a0,则一次函数yaxb为增函数,二次函数yax2bxc的
6、图象开口向上,故可排除A;若a0,b0,从而0,而二次函数的对称轴在y轴的右侧,故应排除B,选C.命题点2二次函数的单调性例3 函数f(x)ax2(a3)x1在区间1,)上是递减的,则实数a的取值范围是()A3,0) B(,3C2,0 D3,0答案D解析当a0时,f(x)3x1在1,)上单调递减,满足题意当a0时,f(x)的对称轴为x,由f(x)在1,)上单调递减,知解得3a0.综上,a的取值范围为3,0引申探究若函数f(x)ax2(a3)x1的单调减区间是1,),则a_.答案3解析由题意知f(x)必为二次函数且a0时,函数f(x)在区间1,2上是增函数,最大值为f(2)8a14,解得a;(3
7、)当a0时,函数f(x)在区间1,2上是减函数,最大值为f(1)1a4,解得a3.综上可知,a的值为或3.引申探究将本例改为:求函数f(x)x22ax1在区间1,2上的最大值解f(x)(xa)21a2,f(x)的图象是开口向上的抛物线,对称轴为xa.(1)当a时,f(x)maxf(2)4a5,(2)当a即a时,f(x)maxf(1)22a,综上,f(x)max命题点4二次函数中的恒成立问题例5 (1)已知二次函数f(x)满足f(x1)f(x)2x,且f(0)1,若不等式f(x)2xm在区间1,1上恒成立,则实数m的取值范围为_答案(,1)解析设f(x)ax2bxc(a0),由f(0)1,得c1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版高考数学大一轮复习 第二章 函数概念与基本初等函数2 2020 高考 数学 一轮 复习 第二 函数 概念 基本 初等
链接地址:https://www.77wenku.com/p-121482.html