2020版高考数学大一轮复习 第八章 立体几何 8.2 空间几何体的表面积与体积
《2020版高考数学大一轮复习 第八章 立体几何 8.2 空间几何体的表面积与体积》由会员分享,可在线阅读,更多相关《2020版高考数学大一轮复习 第八章 立体几何 8.2 空间几何体的表面积与体积(17页珍藏版)》请在七七文库上搜索。
1、8.2空间几何体的表面积与体积最新考纲考情考向分析了解球、棱柱、棱锥、台的表面积和体积的计算公式.主要考查涉及空间几何体的表面积与体积常以选择题与填空题为主,涉及空间几何体的结构特征、三视图等内容,要求考生要有较强的空间想象能力和计算能力,难度为中低档.1多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和2圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧2rlS圆锥侧rlS圆台侧(r1r2)l3.柱、锥、台、球的表面积和体积 名称几何体表面积体积柱体(棱柱和圆柱)S表面积S侧2S底VSh锥体(
2、棱锥和圆锥)S表面积S侧S底VSh台体(棱台和圆台)S表面积S侧S上S下V(S上S下)h球S4R2VR3概念方法微思考1如何求旋转体的表面积?提示求旋转体的侧面积时需要将曲面展开为平面图形计算,而表面积是侧面积与底面积之和2如何求不规则几何体的体积?提示求不规则几何体的体积要注意分割与补形,将不规则的几何体通过分割或补形转化为规则的几何体求解题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)多面体的表面积等于各个面的面积之和()(2)台体的体积可转化为两个锥体的体积之差()(3)锥体的体积等于底面积与高之积()(4)已知球O的半径为R,其内接正方体的边长为a,则Ra.()(5
3、)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2S.()题组二教材改编2已知圆锥的表面积等于12 cm2,其侧面展开图是一个半圆,则底面圆的半径为()A1 cm B2 cmC3 cm D. cm答案B解析S表r2rlr2r2r3r212,r24,r2.3如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为_答案147解析设长方体的相邻三条棱长分别为a,b,c,它截出棱锥的体积V1abcabc,剩下的几何体的体积V2abcabcabc,所以V1V2147.题组三易错自纠4体积为8的正方体的顶点都在同一球面上,则该球的表面积为()
4、A12 B. C8 D4答案A解析由题意可知正方体的棱长为2,其体对角线为2即为球的直径,所以球的表面积为4R2(2R)212,故选A.5已知某几何体的三视图如图所示,则该几何体的体积为_答案解析由三视图可知,该几何体是一个圆柱挖去了一个同底等高的圆锥,其体积为222222.题型一求空间几何体的表面积1(2018全国)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A12 B12C8 D10答案B解析设圆柱的轴截面的边长为x,则由x28,得x2,S圆柱表2S底S侧2()22212.故选B.2(2019抚顺模拟)下图是某
5、几何体的三视图,则此几何体的表面积为()A422 B44C242 D84答案A解析该几何体为三棱锥,其直观图如图所示,为三棱锥B1ACD,则其表面积为四个面面积之和S222(2)2422.思维升华 空间几何体表面积的求法(1)旋转体的表面积问题注意其侧面展开图的应用(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理(3)以三视图为载体的需确定几何体中各元素之间的位置关系及数量题型二求空间几何体的体积命题点1求以三视图为背景的几何体的体积例1 (2017全国)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何
6、体的体积为()A90 B63C42 D36答案B解析方法一(割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示将圆柱补全,并将圆柱从点A处水平分成上下两部分由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的,所以该几何体的体积V32432663.故选B.方法二(估值法)由题意知,V圆柱V几何体V圆柱,又V圆柱321090,45V几何体90.观察选项可知只有63符合故选B.命题点2求简单几何体的体积例2 如图,正三棱柱ABCA1B1C1的底面边长为2,侧棱长为,D为BC的中点,则三棱锥AB1DC1的体积为()A3 B.C1 D.答案C解析如题图,因为AB
7、C是正三角形,且D为BC中点,则ADBC.又因为BB1平面ABC,AD平面ABC,故BB1AD,且BB1BCB,BB1,BC平面BCC1B1,所以AD平面BCC1B1,所以AD是三棱锥AB1DC1的高所以AD1.思维升华 空间几何体体积问题的常见类型及解题策略(1)直接利用公式进行求解(2)用转换法、分割法、补形法等方法进行求解(3)以三视图的形式给出的应先得到几何体的直观图跟踪训练1 (1)(2018兰州模拟)九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈;上袤二丈,无广;高一丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长
8、4丈;上棱长2丈,高1丈,问它的体积是多少?”已知1丈为10尺,现将该楔体的三视图给出,其中网格纸上小正方形的边长为1丈,则该楔体的体积为()A5 000 立方尺 B5 500 立方尺C6 000 立方尺 D6 500 立方尺答案A解析(分割法)该楔体的直观图如图中的几何体ABCDEF.取AB的中点G,CD的中点H,连接FG,GH,HF,则该几何体的体积为四棱锥FGBCH与三棱柱ADEGHF的体积之和又可以将三棱柱ADEGHF割补成高为EF,底面积为S31(平方丈)的一个直棱柱,故该楔体的体积V22315(立方丈)5 000(立方尺)(2)如图,直三棱柱ABCA1B1C1的各条棱长均为2,D为
9、棱B1C1上任意一点,则三棱锥DA1BC的体积是_答案解析 .题型三与球有关的切、接问题例3 已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB3,AC4,ABAC,AA112,则球O的半径为()A. B2C. D3答案C解析如图所示,由球心作平面ABC的垂线,则垂足为BC的中点M.又AMBC,OMAA16,所以球O的半径ROA .引申探究1本例若将直三棱柱改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少?解由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径设该正方体外接球的半径为R,内切球的半径为r.又正方体的棱长为4,故其体对角
10、线长为4,从而V外接球R3(2)332,V内切球r323.2本例若将直三棱柱改为“正四面体”,则此正四面体的表面积S1与其内切球的表面积S2的比值为多少?解正四面体棱长为a,则正四面体表面积为S14a2a2,其内切球半径r为正四面体高的,即raa,因此内切球表面积为S24r2,则.3本例中若将直三棱柱改为“侧棱和底面边长都是3的正四棱锥”,则其外接球的半径是多少?解依题意,得该正四棱锥底面对角线的长为36,高为3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.思维升华 “切”“接”问题的处理规律(1)“切”的处理首先要找准切点,通过作
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版高考数学大一轮复习 第八章 立体几何 2020 高考 数学 一轮 复习 第八
链接地址:https://www.77wenku.com/p-121491.html