2020版高考数学大一轮复习 第八章 立体几何 8.5 直线、平面垂直的判定与性质
《2020版高考数学大一轮复习 第八章 立体几何 8.5 直线、平面垂直的判定与性质》由会员分享,可在线阅读,更多相关《2020版高考数学大一轮复习 第八章 立体几何 8.5 直线、平面垂直的判定与性质(28页珍藏版)》请在七七文库上搜索。
1、8.5直线、平面垂直的判定与性质最新考纲考情考向分析1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.直线、平面垂直的判定及其性质是高考中的重点考查内容,涉及线线垂直、线面垂直、面面垂直的判定及其应用、直线与平面所成角等内容题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.1直线与平面垂直图形条件结论判定ab,b(b为内的任意一条直线)aam,an,m、n,mnOaab,ab性质a,baba,bab2.平面与平面垂直(1)平面与平面垂直的定义如果两个相交
2、平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直(2)判定定理与性质定理文字语言图形语言符号语言判定定理如果一个平面过另一个平面的一条垂线,则两个平面互相垂直性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面l概念方法微思考1若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面吗?提示垂直若两平行线中的一条垂直于一个平面,那么在平面内可以找到两条相交直线与该直线垂直,根据异面直线所成的角,可以得出两平行直线中的另一条也与平面内的那两条直线成90的角,即垂直于平面内的这两条相交直线,所以垂直于这个平面2两
3、个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面吗?提示垂直在两个相交平面内分别作与第三个平面交线垂直的直线,则这两条直线都垂直于第三个平面,那么这两条直线互相平行由线面平行的性质定理可知,这两个相交平面的交线与这两条垂线平行,所以该交线垂直于第三个平面题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)直线l与平面内的无数条直线都垂直,则l.()(2)垂直于同一个平面的两平面平行()(3)直线a,b,则ab.()(4)若,a,则a.()(5)若直线a平面,直线b,则直线a与b垂直()(6)若平面内的一条直线垂直于平面内的无数条直线,则.()题组二教材改编2下列命题
4、中错误的是()A如果平面平面,那么平面内一定存在直线平行于平面B如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面C如果平面平面,平面平面,l,那么l平面D如果平面平面,那么平面内所有直线都垂直于平面答案D解析对于D,若平面平面,则平面内的直线可能不垂直于平面,即与平面的关系还可以是斜交、平行或在平面内,其他选项均是正确的3在三棱锥PABC中,点P在平面ABC中的射影为点O.(1)若PAPBPC,则点O是ABC的_心;(2)若PAPB,PBPC,PCPA,则点O是ABC的_心答案(1)外(2)垂解析(1)如图1,连接OA,OB,OC,OP,在RtPOA,RtPOB和RtPOC中,PAPC
5、PB,所以OAOBOC,即O为ABC的外心(2)如图2,延长AO,BO,CO分别交BC,AC,AB于点H,D,G.PCPA,PBPC,PAPBP,PA,PB平面PAB,PC平面PAB,又AB平面PAB,PCAB,ABPO,POPCP,PO,PC平面PGC,AB平面PGC,又CG平面PGC,ABCG,即CG为ABC边AB上的高同理可证BD,AH分别为ABC边AC,BC上的高,即O为ABC的垂心题组三易错自纠4若l,m为两条不同的直线,为平面,且l,则“m”是“ml”的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件答案A解析由l且m能推出ml,充分性成立;若l且ml,则m
6、或者m,必要性不成立,因此“m”是“ml”的充分不必要条件,故选A.5.如图所示,在正方体ABCDA1B1C1D1中,点O,M,N分别是线段BD,DD1,D1C1的中点,则直线OM与AC,MN的位置关系是()A与AC,MN均垂直B与AC垂直,与MN不垂直C与AC不垂直,与MN垂直D与AC,MN均不垂直答案A解析因为DD1平面ABCD,所以ACDD1,又因为ACBD,DD1BDD,所以AC平面BDD1B1,因为OM平面BDD1B1,所以OMAC.设正方体的棱长为2,则OM,MN,ON,所以OM2MN2ON2,所以OMMN.故选A.6.如图所示,AB是半圆O的直径,VA垂直于半圆O所在的平面,点C
7、是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是()AMNABB平面VAC平面VBCCMN与BC所成的角为45DOC平面VAC答案B解析由题意得BCAC,因为VA平面ABC,BC平面ABC,所以VABC.因为ACVAA,所以BC平面VAC.因为BC平面VBC,所以平面VAC平面VBC.故选B.题型一直线与平面垂直的判定与性质例1 如图所示,在直三棱柱ABCA1B1C1中,ABACAA13,BC2,D是BC的中点,F是CC1上一点当CF2时,证明:B1F平面ADF.证明因为ABAC,D是BC的中点,所以ADBC.在直三棱柱ABCA1B1C1中,因为BB1底面ABC
8、,AD底面ABC,所以ADB1B.因为BCB1BB,BC,B1B平面B1BCC1,所以AD平面B1BCC1.因为B1F平面B1BCC1,所以ADB1F.方法一在矩形B1BCC1中,因为C1FCD1,B1C1CF2,所以RtDCFRtFC1B1,所以CFDC1B1F,所以B1FD90,所以B1FFD.因为ADFDD,AD,FD平面ADF,所以B1F平面ADF.方法二在RtB1BD中,BDCD1,BB13,所以B1D.在RtB1C1F中,B1C12,C1F1,所以B1F.在RtDCF中,CF2,CD1,所以DF.显然DF2B1F2B1D2,所以B1FD90.所以B1FFD.因为ADFDD,AD,F
9、D平面ADF,所以B1F平面ADF.思维升华 证明线面垂直的常用方法及关键(1)证明线面垂直的常用方法:判定定理;垂直于平面的传递性;面面垂直的性质(2)证明线面垂直的关键是证线线垂直,而证明线线垂直,则需借助线面垂直的性质跟踪训练1如图,在三棱锥ABCD中,ABAD,BCBD,平面ABD平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EFAD.求证:(1)EF平面ABC;(2)ADAC.证明(1)在平面ABD内,因为ABAD,EFAD,则ABEF.又因为EF平面ABC,AB平面ABC,所以EF平面ABC.(2)因为平面ABD平面BCD,平面ABD平面BCDBD,BC平面BCD
10、,BCBD,所以BC平面ABD.因为AD平面ABD,所以BCAD.又ABAD,BCABB,AB平面ABC,BC平面ABC,所以AD平面ABC.又因为AC平面ABC,所以ADAC.题型二平面与平面垂直的判定与性质例2 (2018全国)如图,在平行四边形ABCM中,ABAC3,ACM90.以AC为折痕将ACM折起,使点M到达点D的位置,且ABDA.(1)证明:平面ACD平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BPDQDA,求三棱锥QABP的体积(1)证明由已知可得,BAC90,即BAAC.又BAAD,ADACA,AD,AC平面ACD,所以AB平面ACD.又AB平面ABC,所以平
11、面ACD平面ABC.(2)解由已知可得,DCCMAB3,DA3.又BPDQDA,所以BP2.如图,过点Q作QEAC,垂足为E,则QEDC且QEDC.由已知及(1)可得,DC平面ABC,所以QE平面ABC,QE1.因此,三棱锥QABP的体积为VQABPSABPQE32sin 4511.思维升华 (1)判定面面垂直的方法面面垂直的定义;面面垂直的判定定理(a,a)(2)在已知平面垂直时,一般要用性质定理进行转化在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直跟踪训练2 (2018锦州调研)如图,三棱锥PABC中,底面ABC是边长为2的正三角形,PAPC,PB2.(1)求证:平面P
12、AC平面ABC;(2)若PAPC,求三棱锥PABC的体积证明(1)如图,取AC的中点O,连接BO,PO,因为ABC是边长为2的正三角形,所以BOAC,BO.因为PAPC,所以POAC1.因为PB2,所以OP2OB2PB2,所以POOB.因为ACOPO,AC,OP平面PAC,所以BO平面PAC.又OB平面ABC,所以平面PAC平面ABC.(2)解因为PAPC,PAPC,AC2,所以PAPC.由(1)知BO平面PAC,所以VPABCVBAPCSPACBO.题型三垂直关系的综合应用命题点1直线与平面所成的角例3 如图,AB是O的直径,PA垂直于O所在的平面,C是圆周上不同于A,B的一动点(1)证明:
13、PBC是直角三角形;(2)若PAAB2,且当直线PC与平面ABC所成角的正切值为 时,求直线AB与平面PBC所成角的正弦值(1)证明AB是O的直径,C是圆周上不同于A,B的一动点BCAC,PA平面ABC,BCPA,又PAACA,PA,AC平面PAC,BC平面PAC,BCPC,BPC是直角三角形(2)解如图,过A作AHPC于H,BC平面PAC,BCAH,又PCBCC,PC,BC平面PBC,AH平面PBC,ABH是直线AB与平面PBC所成的角,PA平面ABC,PCA即是PC与平面ABC所成的角,tanPCA,又PA2,AC,在RtPAC中,AH,在RtABH中,sinABH,即直线AB与平面PBC
14、所成角的正弦值为.命题点2与垂直有关的探索性问题例4 如图,直三棱柱ABCA1B1C1中,D,E分别是棱BC,AB的中点,点F在棱CC1上,已知ABAC,AA13,BCCF2.(1)求证:C1E平面ADF;(2)设点M在棱BB1上,当BM为何值时,平面CAM平面ADF.(1)证明连接CE交AD于O,连接OF.因为CE,AD为ABC的中线,则O为ABC的重心,故,故OFC1E,因为OF平面ADF,C1E平面ADF,所以C1E平面ADF.(2)解当BM1时,平面CAM平面ADF.证明如下:因为ABAC,AD平面ABC,故ADBC.在直三棱柱ABCA1B1C1中,BB1平面ABC,BB1平面B1BC
15、C1,故平面B1BCC1平面ABC.又平面B1BCC1平面ABCBC,AD平面ABC,所以AD平面B1BCC1,又CM平面B1BCC1,故ADCM.又BM1,BC2,CD1,FC2,故RtCBMRtFCD.易证CMDF,又DFADD,DF,AD平面ADF,故CM平面ADF.又CM平面CAM,故平面CAM平面ADF.思维升华 对命题条件的探索的三种途径途径一:先猜后证途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性途径三:将几何问题转化为代数问题跟踪训练3 如图所示的空间几何体ABCDEFG中,四边形ABCD是边长为2的正方形,AE平面ABCD,EFAB,EGAD,EFEG1.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版高考数学大一轮复习 第八章 立体几何 2020 高考 数学 一轮 复习 第八
链接地址:https://www.77wenku.com/p-121494.html