2020版高考数学大一轮复习 第九章 平面解析几何 9.5 椭圆 第2课时 直线与椭圆
《2020版高考数学大一轮复习 第九章 平面解析几何 9.5 椭圆 第2课时 直线与椭圆》由会员分享,可在线阅读,更多相关《2020版高考数学大一轮复习 第九章 平面解析几何 9.5 椭圆 第2课时 直线与椭圆(15页珍藏版)》请在七七文库上搜索。
1、第2课时直线与椭圆题型一直线与椭圆的位置关系1.若直线ykx1与椭圆1总有公共点,则m的取值范围是()A.m1 B.m0C.0m5且m1 D.m1且m5答案D解析方法一由于直线ykx1恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上,则00且m5,m1且m5.2.已知直线l:y2xm,椭圆C:1.试问当m取何值时,直线l与椭圆C:(1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点.解将直线l的方程与椭圆C的方程联立,得方程组将代入,整理得9x28mx2m240. 方程根的判别式(8m)249(2m24)8m2144.(1)当0,即3m3时,方程有两个不同的实数根,可知原
2、方程组有两组不同的实数解.这时直线l与椭圆C有两个不重合的公共点.(2)当0,即m3时,方程有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l与椭圆C有两个互相重合的公共点,即直线l与椭圆C有且只有一个公共点.(3)当0,即m3时,方程没有实数根,可知原方程组没有实数解.这时直线l与椭圆C没有公共点.思维升华 研究直线与椭圆位置关系的方法(1)研究直线和椭圆的位置关系,一般转化为研究其直线方程与椭圆方程组成的方程组解的个数.(2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交点.题型二弦长及中点弦问题命题点1弦长问题例1 斜率为1的直线l与椭圆y21相交于A,
3、B两点,则|AB|的最大值为()A.2 B. C. D.答案C解析设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为yxt,由消去y,得5x28tx4(t21)0,则x1x2t,x1x2.|AB|x1x2|,当t0时,|AB|max.命题点2中点弦问题例2 已知P(1,1)为椭圆1内一定点,经过P引一条弦,使此弦被P点平分,则此弦所在的直线方程为_.答案x2y30解析方法一易知此弦所在直线的斜率存在,设其方程为y1k(x1),弦所在的直线与椭圆相交于A,B两点,A(x1,y1),B(x2,y2).由消去y得,(2k21)x24k(k1)x2(k22k1)0,x1x2,又x1
4、x22,2,解得k.经检验,k满足题意.故此弦所在的直线方程为y1(x1),即x2y30.方法二易知此弦所在直线的斜率存在,设斜率为k,弦所在的直线与椭圆相交于A,B两点,设A(x1,y1),B(x2,y2),则1, 1, 得0,x1x22,y1y22,y1y20,k.经检验,k满足题意.此弦所在的直线方程为y1(x1),即x2y30.思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,应用根与系数的关系,解决相关问题.涉及中点弦的问题时用“点差法”解决,往往会更简单.记住必须检验.(2)设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|A
5、B| (k为直线斜率).(3)利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.跟踪训练1 设离心率为的椭圆E:1(ab0)的左、右焦点分别为F1,F2,点P是E上一点,PF1PF2,PF1F2内切圆的半径为1.(1)求E的方程;(2)矩形ABCD的两顶点C,D在直线yx2上,A,B在椭圆E上,若矩形ABCD的周长为,求直线AB的方程.解(1)RtPF1F2内切圆的半径r(|PF1|PF2|F1F2|)ac,依题意有ac1.又,则a,c1,从而b1.故椭圆E的方程为y21.(2)设直线AB的方程为yxm,代入椭圆E的方程,整理得3x24mx2m220,由0得m.设A(
6、x1,y1),B(x2,y2),则x1x2,x1x2.|AB|x2x1|.易知|BC|,则由m知|BC|,所以由已知可得|AB|BC|,即,整理得41m230m710,解得m1或m(均满足mb0),e,其中F是椭圆的右焦点,焦距为2,直线l与椭圆C交于点A,B,线段AB的中点横坐标为,且(其中1).(1)求椭圆C的标准方程;(2)求实数的值.解(1)由椭圆的焦距为2,知c1,又e,a2,故b2a2c23,椭圆C的标准方程为1.(2)由,可知A,B,F三点共线,设点A(x1,y1),点B(x2,y2).若直线ABx轴,则x1x21,不符合题意;当AB所在直线l的斜率k存在时,设l的方程为yk(x
7、1).由消去y得(34k2)x28k2x4k2120. 的判别式64k44(4k23)(4k212)144(k21)0.x1x22,k2.将k2代入方程,得4x22x110,解得x.又(1x1,y1),(x21,y2),即1x1(x21),又1,.思维升华 一般地,在椭圆与向量等知识的综合问题中,平面向量只起“背景”或“结论”的作用,几乎都不会在向量的知识上设置障碍,所考查的核心内容仍然是解析几何的基本方法和基本思想.跟踪训练2 已知椭圆C的两个焦点分别为F1(1,0),F2(1,0),短轴的两个端点分别为B1,B2.(1)若F1B1B2为等边三角形,求椭圆C的方程;(2)若椭圆C的短轴长为2
8、,过点F2的直线l与椭圆C相交于P,Q两点,且,求直线l的方程.解(1)F1B1B2为等边三角形,则椭圆C的方程为3y21.(2)易知椭圆C的方程为y21,当直线l的斜率不存在时,其方程为x1,不符合题意;当直线l的斜率存在时,设直线l的方程为yk(x1),由得(2k21)x24k2x2(k21)0,由已知得0,设P(x1,y1),Q(x2,y2),则x1x2,x1x2,(x11,y1),(x21,y2),因为,所以0,即(x11)(x21)y1y2x1x2(x1x2)1k2(x11)(x21)(k21)x1x2(k21)(x1x2)k210,解得k2,即k,故直线l的方程为xy10或xy10
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版高考数学大一轮复习 第九章 平面解析几何 2020 高考 数学 一轮 复习 第九 平面 解析几何
链接地址:https://www.77wenku.com/p-121495.html