2020版高考数学大一轮复习 第三章 导数及其应用 高考专题突破1第1课时 导数与不等式
《2020版高考数学大一轮复习 第三章 导数及其应用 高考专题突破1第1课时 导数与不等式》由会员分享,可在线阅读,更多相关《2020版高考数学大一轮复习 第三章 导数及其应用 高考专题突破1第1课时 导数与不等式(7页珍藏版)》请在七七文库上搜索。
1、高考专题突破一高考中的导数应用问题第1课时导数与不等式题型一证明不等式例1 设函数f(x)ln xx1.(1)讨论f(x)的单调性;(2)证明:当x(1,)时,1x.(1)解由题设知,f(x)的定义域为(0,),f(x)1,令f(x)0,解得x1.当0x0,f(x)单调递增;当x1时,f(x)0,f(x)单调递减(2)证明由(1)知,f(x)在x1处取得极大值也为最大值,最大值为f(1)0.所以当x1时,ln xx1.故当x(1,)时,ln xx1,ln1,即1g(x)的一般方法是证明h(x)f(x)g(x)0(利用单调性),特殊情况是证明f(x)ming(x)max(最值方法),但后一种方法
2、不具备普遍性(2)证明二元不等式的基本思想是化为一元不等式,一种方法为变换不等式使两个变元成为一个整体,另一种方法为转化后利用函数的单调性,如不等式f(x1)g(x1)f(x2)g(x2)对x1x2恒成立,即等价于函数h(x)f(x)g(x)为增函数跟踪训练1 已知函数f(x)xln xex1.(1)求曲线yf(x)在点(1,f(1)处的切线方程;(2)证明:f(x)sin x在(0,)上恒成立(1)解依题意得f(x)ln x1ex,又f(1)1e,f(1)1e,故所求切线方程为y1e(1e)(x1),即y(1e)x.(2)证明依题意,要证f(x)sin x,即证xln xex1sin x,即
3、证xln xexsin x1.当00,xln x0,故xln xexsin x1,即f(x)1时,令g(x)exsin x1xln x,故g(x)excos xln x1.令h(x)g(x)excos xln x1,则h(x)exsin x,当x1时,exe11,所以h(x)exsin x0,故h(x)在(1,)上单调递增故h(x)h(1)ecos 110,即g(x)0,所以g(x)在(1,)上单调递增,所以g(x)g(1)esin 110,即xln xexsin x1,即f(x)sin x.综上所述,f(x)0,f(x)单调递增;当x(1,)时,f(x)0,f(x)单调递减所以x1为函数f(
4、x)的极大值点,且是唯一极值点,所以0a1a,故a0,所以g(x)为单调增函数,所以g(x)g(1)2,故k2,即实数k的取值范围是(,2引申探究本例(2)中若改为:x1,e,使不等式f(x)成立,求实数k的取值范围解当x1,e时,k有解,令g(x)(x1,e),由例(2)解题知,g(x)为单调增函数,所以g(x)maxg(e)2,所以k2,即实数k的取值范围是.思维升华 利用导数解决不等式的恒成立问题的策略(1)首先要构造函数,利用导数求出最值,求出参数的取值范围(2)也可分离变量,构造函数,直接把问题转化为函数的最值问题跟踪训练2 已知函数f(x)axln x,x1,e,若f(x)0恒成立
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版高考数学大一轮复习 第三章 导数及其应用 高考专题突破1第1课时 导数与不等式 2020 高考 数学 一轮 复习 第三 导数 及其 应用 专题 突破 课时 不等式
链接地址:https://www.77wenku.com/p-121496.html