2020版高考数学大一轮复习 第八章 立体几何 高考专题突破4 高考中的立体几何问题
《2020版高考数学大一轮复习 第八章 立体几何 高考专题突破4 高考中的立体几何问题》由会员分享,可在线阅读,更多相关《2020版高考数学大一轮复习 第八章 立体几何 高考专题突破4 高考中的立体几何问题(15页珍藏版)》请在七七文库上搜索。
1、高考专题突破四高考中的立体几何问题题型一平行、垂直关系的证明例1 如图,在直三棱柱ABCA1B1C1中,A1B1A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且ADDE,F为B1C1的中点求证:(1)平面ADE平面BCC1B1;(2)直线A1F平面ADE.证明(1)三棱柱ABCA1B1C1是直三棱柱,CC1平面ABC.AD平面ABC,ADCC1.又ADDE,DECC1E,DE,CC1平面BCC1B1,AD平面BCC1B1.AD平面ADE,平面ADE平面BCC1B1.(2)A1B1C1中,A1B1A1C1,F为B1C1的中点,A1FB1C1.CC1平面A1B1C1,A1F平面A1
2、B1C1,A1FCC1.又B1C1CC1C1,B1C1,CC1平面BCC1B1,A1F平面BCC1B1.又AD平面BCC1B1,A1FAD.A1F平面ADE,AD平面ADE,直线A1F平面ADE.思维升华 (1)平行问题的转化利用线线平行、线面平行、面面平行的相互转化解决平行关系的判定问题时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而应用性质定理时,其顺序正好相反在实际的解题过程中,判定定理和性质定理一般要相互结合,灵活运用(2)垂直问题的转化在空间垂直关系中,线面垂直是核心,已知线面垂直,既可为证明线线垂直提供依据,又可为利用判定定理证明面面垂直
3、作好铺垫应用面面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,从而把面面垂直问题转化为线面垂直问题,进而可转化为线线垂直问题跟踪训练1 (2018北京)如图,在四棱锥PABCD中,底面ABCD为矩形,平面PAD平面ABCD,PAPD,PAPD,E,F分别为AD,PB的中点(1)求证:PEBC;(2)求证:平面PAB平面PCD;(3)求证:EF平面PCD.证明(1)因为PAPD,E为AD的中点,所以PEAD.因为底面ABCD为矩形,所以BCAD,所以PEBC.(2)因为底面ABCD为矩形,所以ABAD.又因为平面PAD平面ABCD,平面PAD平面ABCDAD,AB
4、平面ABCD,所以AB平面PAD,又PD平面PAD,所以ABPD.又因为PAPD,PAABA,PA,AB平面PAB,所以PD平面PAB.又PD平面PCD,所以平面PAB平面PCD.(3)如图,取PC的中点G,连接FG,DG.因为F,G分别为PB,PC的中点,所以FGBC,FGBC,因为四边形ABCD为矩形,且E为AD的中点,所以DEBC,DEBC.所以DEFG,DEFG.所以四边形DEFG为平行四边形,所以EFDG.又因为EF平面PCD,DG平面PCD,所以EF平面PCD.题型二立体几何中的计算问题例2如图,在多面体ABCA1B1C1中,四边形ABB1A1是正方形,A1CB是等边三角形,ACA
5、B1,B1C1BC,BC2B1C1.(1)求证:AB1平面A1C1C;(2)求多面体ABCA1B1C1的体积(1)证明如图,取BC的中点D,连接AD,B1D,C1D,B1C1BC,BC2B1C1,BDB1C1,BDB1C1,CDB1C1,CDB1C1,四边形BDC1B1,CDB1C1是平行四边形,C1DB1B,C1DB1B,CC1B1D,又B1D平面A1C1C,C1C平面A1C1C,B1D平面A1C1C.在正方形ABB1A1中,BB1AA1,BB1AA1,C1DAA1,C1DAA1,四边形ADC1A1为平行四边形,ADA1C1.又AD平面A1C1C,A1C1平面A1C1C,AD平面A1C1C,
6、B1DADD,B1D,AD平面ADB1,平面ADB1平面A1C1C,又AB1平面ADB1,AB1平面A1C1C.(2)解在正方形ABB1A1中,A1B,A1BC是等边三角形,A1CBC,AC2AAA1C2,AB2AC2BC2,AA1AC,ACAB.又AA1AB,AA1平面ABC,AA1CD,易得CDAD,又ADAA1A,CD平面ADC1A1.易知多面体ABCA1B1C1是由直三棱柱ABDA1B1C1和四棱锥CADC1A1组成的,直三棱柱ABDA1B1C1的体积为1,四棱锥CADC1A1的体积为1,多面体ABCA1B1C1的体积为.思维升华 (1)若所给定的几何体是柱体、锥体或台体等规则几何体,
7、则可直接利用公式进行求解其中,等积转换法多用来求三棱锥的体积(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解跟踪训练2 (2019阜新调研)如图,已知多面体PABCDE的底面ABCD是边长为2的菱形,PA底面ABCD,EDPA,且PA2ED2.(1)证明:平面PAC平面PCE;(2)若ABC60,求三棱锥PACE的体积(1)证明如图,连接BD,交AC于点O,设PC的中点为F,连接OF,EF.易知O为AC的中点,所以OFPA,且OFPA.因为DEPA,且DE
8、PA,所以OFDE,且OFDE,所以四边形OFED为平行四边形,所以ODEF,即BDEF.因为PA平面ABCD,BD平面ABCD,所以PABD.因为四边形ABCD是菱形,所以BDAC.因为PAACA,PA,AC平面PAC,所以BD平面PAC.因为BDEF,所以EF平面PAC.因为EF平面PCE,所以平面PAC平面PCE.(2)解因为ABC60,所以ABC是等边三角形,所以AC2.又PA平面ABCD,AC平面ABCD,所以PAAC.所以SPACPAAC2.因为EF平面PAC,所以EF是三棱锥EPAC的高易知EFDOBO,所以三棱锥PACE的体积V三棱锥PACEV三棱锥EPACSPACEF2.题型
9、三立体几何中的探索性问题例3 如图,梯形ABCD中,BADADC90,CD2,ADAB1,四边形BDEF为正方形,且平面BDEF平面ABCD.(1)求证:DFCE;(2)若AC与BD相交于点O,那么在棱AE上是否存在点G,使得平面OBG平面EFC?并说明理由(1)证明连接EB.在梯形ABCD中,BADADC90,ABAD1,DC2,BD,BC,BD2BC2CD2,BCBD.又平面BDEF平面ABCD,平面BDEF平面ABCDBD,BC平面ABCD,BC平面BDEF,BCDF.又正方形BDEF中,DFEB,且EB,BC平面BCE,EBBCB,DF平面BCE.又CE平面BCE,DFCE.(2)解在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版高考数学大一轮复习 第八章 立体几何 高考专题突破4 高考中的立体几何问题 2020 高考 数学 一轮 复习 第八 专题 突破 中的 问题
链接地址:https://www.77wenku.com/p-121497.html