2020版高考数学大一轮复习 第十一章 概率 11.1 随机事件的概率与古典概型
《2020版高考数学大一轮复习 第十一章 概率 11.1 随机事件的概率与古典概型》由会员分享,可在线阅读,更多相关《2020版高考数学大一轮复习 第十一章 概率 11.1 随机事件的概率与古典概型(26页珍藏版)》请在七七文库上搜索。
1、11.1随机事件的概率与古典概型最新考纲考情考向分析1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式.3.理解古典概型及其概率计算公式.4.会计算一些随机事件所含的基本事件数及事件发生的概率.以考查随机事件、互斥事件与对立事件的概率为主,常与事件的频率交汇考查.本节内容在高考中三种题型都有可能出现,随机事件的频率与概率的题目往往以解答题的形式出现,互斥事件、对立事件的概念及概率常常以选择、填空题的形式出现.1.事件(1)不可能事件、必然事件、随机事件:在同样的条件下重复进行试验时,有的结果始终不会发生,它称为不可能事件;有的结果
2、在每次试验中一定会发生,它称为必然事件;有的结果可能发生,也可能不发生,它称为随机事件.(2)基本事件、基本事件空间:试验连同它出现的每一个结果称为一个基本事件,它是试验中不能再分的最简单的随机事件;所有基本事件构成的集合称为基本事件空间,基本事件空间常用大写希腊字母表示.2.概率与频率(1)概率定义:在n次重复进行的试验中,事件A发生的频率,当n很大时,总是在某个常数附近摆动,随着n的增加,摆动幅度越来越小,这时就把这个常数叫做事件A的概率,记作P(A).(2)概率与频率的关系:概率可以通过频率来“测量”,频率是概率的一个近似.3.事件的关系与运算名称定义并事件(和事件)由事件A和B至少有一
3、个发生所构成的事件C互斥事件不可能同时发生的两个事件A、B互为对立事件不能同时发生且必有一个发生的两个事件A、B4.概率的几个基本性质(1)概率的取值范围:0P(A)1.(2)必然事件的概率P(E)1.(3)不可能事件的概率P(F)0.(4)概率的加法公式如果事件A与事件B互斥,则P(AB)P(A)P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)1P(B).5.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.6.古典概型的两个特点(1)有限性:在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等
4、可能性:每个基本事件发生的可能性是均等的.7.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包括的结果有m个,那么事件A的概率P(A).8.古典概型的概率公式P(A).概念方法微思考1.随机事件A发生的频率与概率有何区别与联系?提示随机事件A发生的频率是随机的,而概率是客观存在的确定的常数,但在大量随机试验中事件A发生的频率稳定在事件A发生的概率附近.2.随机事件A,B互斥与对立有何区别与联系?提示当随机事件A,B互斥时,不一定对立,当随机事件A,B对立时,一定互斥.3.任何一个随机事件与基本事件有何关系?提示任何一个随机事件都
5、等于构成它的每一个基本事件的和.4.如何判断一个试验是否为古典概型?提示一个试验是否为古典概型,关键在于这个试验是否具有古典概型的两个特征:有限性和等可能性.题组一思考辨析1.判断下列结论是否正确(请在括号中打“”或“”)(1)事件发生的频率与概率是相同的.()(2)在大量重复试验中,概率是频率的稳定值.()(3)两个事件的和事件是指两个事件都得发生.()(4)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能的.()(5)从市场上出售的标准为5005 g的袋装食盐中任取一袋测其重量,属于古典概型.()题组二教材改编2.一个人打靶时连续射击两次,事件“至少有一次中靶”
6、的对立事件是()A.至多有一次中靶 B.两次都中靶C.只有一次中靶 D.两次都不中靶答案D解析“至少有一次中靶”的对立事件是“两次都不中靶”.3.一个盒子里装有标号为1,2,3,4的4张卡片,随机地抽取2张,则取出的2张卡片上的数字之和为奇数的概率是()A. B.C. D.答案D解析抽取两张卡片的基本事件有:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种,和为奇数的事件有:(1,2),(1,4),(2,3),(3,4),共4种.所求概率为.4.同时掷两个骰子,向上点数不相同的概率为_.答案解析掷两个骰子一次,向上的点数共6636(种)可能的结果,其中点数相同的结
7、果共有6种,所以点数不相同的概率P1.题组三易错自纠5.将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是()A.必然事件 B.随机事件C.不可能事件 D.无法确定答案B解析抛掷10次硬币,正面向上的次数可能为010,都有可能发生,正面向上5次是随机事件.6.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a,放回后,乙从此袋中再摸出一个小球,其号码为b,则使不等式a2b40成立的事件发生的概率为_.答案解析由题意知(a,b)的所有可能结果有4416(种),其中满足a2b40,就去打球,若X0,就去唱歌,若X0,就去下棋,则小
8、波不去唱歌的概率是_.答案解析根据题意可知,X的所有可能取值为2,1,0,1.数量积为2的有,共1种;数量积为1的有,共6种;数量积为0的有,共4种;数量积为1的有,共4种,故所有可能的情况共有164415(种),其中X0的情况有16411(种),故根据古典概型的概率计算公式知小波不去唱歌的概率P.引申探究1.本例(2)中,若将4个球改为颜色相同,标号分别为1,2,3,4的四个小球,从中一次取两球,求标号和为奇数的概率.解基本事件数仍为6.设标号和为奇数为事件A,则A包含的基本事件为(1,2),(1,4),(2,3),(3,4),共4种,所以P(A).2.本例(2)中,若将条件改为有放回地取球
9、,取两次,求两次取球颜色相同的概率.解基本事件为(白,白),(白,红),(白,黄),(白,黄),(红,红),(红,白),(红,黄),(红,黄),(黄,黄),(黄,白),(黄,红),(黄,黄),(黄,黄),(黄,白),(黄,红),(黄,黄),共16种,其中颜色相同的有6种,故所求概率P.思维升华 求古典概型的概率的关键是求试验的基本事件的总数和事件A包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树状图法,具体应用时可根据需要灵活选择.跟踪训练2 (1)(2016全国)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,
10、2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A. B. C. D.答案C解析由题意可知,共15种可能性,而只有1种是正确的.输入一次密码能够成功开机的概率为.(2)(2018大连模拟)已知a0,1,2,b1,1,3,5,则函数f(x)ax22bx在区间(1,)上为增函数的概率是()A. B. C. D.答案A解析a0,1,2,b1,1,3,5,基本事件总数n3412.函数f(x)ax22bx在区间(1,)上为增函数,当a0时,f(x)2bx,符合条件的只有(0,1),即a0,b1;当a0时,需要满足1,符合条件的有(1,1),(1,1),(2,1),(2,1),共4种
11、.函数f(x)ax22bx在区间(1,)上为增函数的概率是P.题型三古典概型与统计的综合应用例5某县共有90个农村淘宝服务网点,随机抽取6个网点统计其元旦期间的网购金额(单位:万元)的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本数据的平均数;(2)若网购金额(单位:万元)不小于18的服务网点定义为优秀服务网点,其余为非优秀服务网点,根据茎叶图推断这90个服务网点中优秀服务网点的个数;(3)从随机抽取的6个服务网点中再任取2个作网购商品的调查,求恰有1个网点是优秀服务网点的概率.解(1)由题意知,样本数据的平均数12.(2)样本中优秀服务网点有2个,概率为,由此估计这90
12、个服务网点中优秀服务网点有9030(个).(3)样本中优秀服务网点有2个,分别记为a1,a2,非优秀服务网点有4个,分别记为b1,b2,b3,b4,从随机抽取的6个服务网点中再任取2个的可能情况有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3),(b1,b4),(b2,b3),(b2,b4),(b3,b4),共15种,记“恰有1个是优秀服务网点”为事件M,则事件M包含的可能情况有:(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,
13、b2),(a2,b3),(a2,b4),共8种,故所求概率P(M).思维升华 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计的结合题,无论是直接描述还是利用概率分布表、频率分布直方图、茎叶图等给出信息,准确从题中提炼信息是解题的关键.跟踪训练3 从某学校高三年级共800名男生中随机抽取50名测量身高,被测学生身高全部介于155 cm和195 cm之间,将测量结果按如下方式分成八组:第一组155,160),第二组160,165),第八组190,195,如图是按上述分组方法得到的频率分布直方图的一部分,已知第六组比第七组多1人,第一组和第八组人数相同.(
14、1)求第六组、第七组的频率并补充完整频率分布直方图;(2)若从身高属于第六组和第八组的所有男生中随机抽取两名,记他们的身高分别为x,y,求|xy|5的概率.解(1)由频率分布直方图知,前五组的频率为(0.0080.0160.040.040.06)50.82,所以后三组的频率为10.820.18,人数为0.18509,由频率分布直方图得第八组的频率为0.00850.04,人数为0.04502,设第六组人数为m,则第七组人数为m1,又mm129,所以m4,即第六组人数为4,第七组人数为3,频率分别为0.08,0.06,频率除以组距分别等于0.016,0.012,则完整的频率分布直方图如图所示:(2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版高考数学大一轮复习 第十一章 概率 11 2020 高考 数学 一轮 复习 第十一
链接地址:https://www.77wenku.com/p-121499.html