2020版高考数学大一轮复习 第四章 三角函数、解三角形高考专题突破2 高考中的三角函数与解三角形问题
《2020版高考数学大一轮复习 第四章 三角函数、解三角形高考专题突破2 高考中的三角函数与解三角形问题》由会员分享,可在线阅读,更多相关《2020版高考数学大一轮复习 第四章 三角函数、解三角形高考专题突破2 高考中的三角函数与解三角形问题(11页珍藏版)》请在七七文库上搜索。
1、高考专题突破二高考中的三角函数与解三角形问题题型一三角函数的图象和性质例1 (2016山东)设f(x)2sin(x)sin x(sin xcos x)2.(1)求f(x)的单调递增区间;(2)把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到函数yg(x)的图象,求g的值解(1)由f(x)2sin(x)sin x(sin xcos x)22sin2x(12sin xcos x)(1cos 2x)sin 2x1sin 2xcos 2x12sin1.由2k2x2k(kZ),得kxk(kZ)所以f(x)的单调递增区间是(kZ).(2)由(1)知f
2、(x)2sin1,把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y2sin1的图象,再把得到的图象向左平移个单位长度,得到y2sin x1的图象,即g(x)2sin x1.所以g2sin 1.思维升华 三角函数的图象与性质是高考考查的重点,通常先将三角函数化为yAsin(x)k的形式,然后将tx视为一个整体,结合ysin t的图象求解跟踪训练1 已知函数f(x)5sin xcos x5cos2x(其中xR),求:(1)函数f(x)的最小正周期;(2)函数f(x)的单调区间;(3)函数f(x)图象的对称轴和对称中心解(1)因为f(x)sin 2x(1cos 2x)55si
3、n,所以函数的最小正周期T.(2)由2k2x2k(kZ),得kxk(kZ),所以函数f(x)的单调递增区间为(kZ)由2k2x2k(kZ),得kxk(kZ),所以函数f(x)的单调递减区间为(kZ)(3)由2xk(kZ),得x(kZ),所以函数f(x)的对称轴方程为x(kZ)由2xk(kZ),得x(kZ),所以函数f(x)的对称中心为(kZ)题型二解三角形例2 ABC的内角A,B,C的对边分别为a,b,c,已知sin Acos A0,a2,b2.(1)求角A和边长c;(2)设D为BC边上一点,且ADAC,求ABD的面积解(1)sin Acos A0,tan A,又0A,A,由余弦定理可得a2b
4、2c22bccos A,即284c222c,即c22c240,解得c6(舍去)或c4,故c4.(2)c2a2b22abcos C,16284222cos C,cos C,CD,CDBC,SABCABACsinBAC422,SABDSABC.思维升华 根据三角形中的已知条件,选择正弦定理或余弦定理求解;在解决有关角的范围问题时,要注意挖掘题目中隐含的条件,对结果进行正确的取舍跟踪训练2 (2017北京)在ABC中,A60,ca.(1)求sin C的值;(2)若a7,求ABC的面积解(1)在ABC中,因为A60,ca,所以由正弦定理得sin C.(2)因为a7,所以c73.由余弦定理a2b2c22
5、bccos A,得72b2322b3,解得b8或b5(舍去)所以ABC的面积Sbcsin A836.题型三三角函数和解三角形的综合应用例3如图,某机械厂欲从AB2米,AD2 米的矩形铁皮中裁剪出一个四边形ABEF加工成某仪器的零件,裁剪要求如下:点E,F分别在边BC,AD上,且EBEF,AFBE.设BEF,四边形ABEF的面积为f()(单位:平方米)(1)求f()关于的函数关系式,求出定义域;(2)当BE,AF的长为何值时,裁剪出的四边形ABEF的面积最小,并求出最小值解(1)过点F作FMBE,垂足为M.在RtFME中,MF2,EMF,FEM,所以EF,ME,故AFBMEFEM,所以f()(A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版高考数学大一轮复习 第四章 三角函数、解三角形高考专题突破2 高考中的三角函数与解三角形问题 2020 高考 数学 一轮 复习 第四 三角函数 三角形 专题 突破 中的 问题
链接地址:https://www.77wenku.com/p-121500.html