2020版高考数学大一轮复习 第二章 函数概念与基本初等函数2.2 函数的单调性与最值
《2020版高考数学大一轮复习 第二章 函数概念与基本初等函数2.2 函数的单调性与最值》由会员分享,可在线阅读,更多相关《2020版高考数学大一轮复习 第二章 函数概念与基本初等函数2.2 函数的单调性与最值(15页珍藏版)》请在七七文库上搜索。
1、2.2函数的单调性与最值最新考纲考情考向分析1.理解函数的单调性、最大(小)值及其几何意义2.会运用基本初等函数的图象分析函数的性质.以基本初等函数为载体,考查函数的单调性、单调区间及函数最值的确定与应用;强化对函数与方程思想、转化与化归思想、分类讨论思想的考查,题型既有选择、填空题,又有解答题.1.函数单调性的定义增函数减函数定义设函数yf(x)的定义域为A,区间MA,如果取区间M中任意两个值x1,x2,改变量xx2x10,则当yf(x2)f(x1)0时,就称函数yf(x)在区间M上是增函数yf(x2)f(x1)0f(x)在D上是增函数,减函数类似2写出对勾函数yx(a0)的增区间提示(,和
2、,)题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)若定义在R上的函数f(x),有f(1)f(3),则函数f(x)在R上为增函数()(2)函数yf(x)在1,)上是增函数,则函数的单调递增区间是1,)()(3)函数y的单调递减区间是(,0)(0,)()(4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数()(5)所有的单调函数都有最值()题组二教材改编2函数f(x)x22x的单调递增区间是_答案1,)(或(1,)3函数y在2,3上的最大值是_答案24若函数f(x)x22mx1在2,)上是增函数,则实数m的取值范围是_答案(,2解析由题意知,2
3、,)m,),m2.题组三易错自纠5函数y(x24)的单调递减区间为_答案(2,)6若函数f(x)|xa|1的增区间是2,),则a_.答案2解析f(x)|xa|1的单调递增区间是a,),a2.7函数yf(x)是定义在2,2上的减函数,且f(a1)f(2a),则实数a的取值范围是_答案1,1)解析由条件知解得1a1.8函数f(x)的最大值为_答案2解析当x1时,函数f(x)为减函数,所以f(x)在x1处取得最大值,为f(1)1;当x0,解得x4或x2,所以(4,)为函数yx22x8的一个单调递增区间根据复合函数的单调性可知,函数f(x)ln(x22x8)的单调递增区间为(4,)(2)函数yx22|
4、x|3的单调递减区间是_答案1,0,1,)解析由题意知,当x0时,yx22x3(x1)24;当x0时,yx22x3(x1)24,二次函数的图象如图由图象可知,函数yx22|x|3的单调递减区间为1,0,1,)命题点2讨论函数的单调性例2 判断并证明函数f(x)ax2(其中1a3)在1,2上的单调性解函数f(x)ax2(1a3)在1,2上单调递增证明:设1x1x22,则f(x2)f(x1)axax(x2x1),由1x10,2x1x24,1x1x24,1.又因为1a3,所以2a(x1x2)0,从而f(x2)f(x1)0,即f(x2)f(x1),故当a(1,3)时,f(x)在1,2上单调递增引申探究
5、如何用导数法求解本例?解f(x)2ax,因为1x2,所以1x38,又1a0,所以f(x)0,所以函数f(x)ax2(其中1a3)在1,2上是增函数思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“”连接(4)具有单调性函数的加减跟踪训练1 (1)下列函数中,满足“x1,x2(0,)且x1x2,(x1x2)f(x1)f(x2)0”的是()Af(x)2x Bf(x)|x1|Cf(x)x Df(x)ln(x1)答案C解析由(x1x2)f(x1)f(x2)0,即a1,
6、因此g(x)的单调递减区间就是y|x2|的单调递减区间(,2(3)函数f(x)|x2|x的单调递减区间是_答案1,2解析f(x)画出f(x)图象,由图知f(x)的单调递减区间是1,2题型二函数的最值1函数y的值域为_答案1,1)解析由y,可得x2.由x20,知0,解得1yx11时,f(x2)f(x1)(x2x1)ab Bcba Cacb Dbac答案D解析根据已知可得函数f(x)的图象关于直线x1对称,且在(1,)上是减函数,因为aff,且2ac.命题点2解函数不等式例4设函数f(x)是奇函数,且在(0,)内是增函数,又f(3)0,则f(x)0的解集是()Ax|3x3Bx|x3或0x3Cx|x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版高考数学大一轮复习 第二章 函数概念与基本初等函数2 2020 高考 数学 一轮 复习 第二 函数 概念 基本 初等
链接地址:https://www.77wenku.com/p-121507.html