2020版高考数学大一轮复习 第七章 不等式、推理与证明 7.6 直接证明与间接证明
《2020版高考数学大一轮复习 第七章 不等式、推理与证明 7.6 直接证明与间接证明》由会员分享,可在线阅读,更多相关《2020版高考数学大一轮复习 第七章 不等式、推理与证明 7.6 直接证明与间接证明(13页珍藏版)》请在七七文库上搜索。
1、7.6直接证明与间接证明最新考纲考情考向分析1.了解直接证明的两种基本方法分析法和综合法;了解分析法和综合法的思考过程和特点2.了解反证法的思考过程和特点.常以立体几何中的证明及相关选修内容中平面几何,不等式的证明为载体加以考查,注意提高分析问题、解决问题的能力;在高考中主要以解答题的形式考查,难度为中档.1直接证明内容综合法分析法定义从已知条件出发,经过逐步的推理,最后达到待证结论的方法,是一种从原因推导到结果的思维方法从待证结论出发,一步一步地寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的事实的方法,是一种从结果追溯到产生这一结果的原因的思维方法特点从“已知”看“可知”,逐步推
2、向“未知”,其逐步推理,实际上是要寻找它的必要条件从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是要寻找它的充分条件步骤的符号表示P0(已知)P1P2P3P4(结论)B(结论)B1B2BnA(已知)2.间接证明(1)反证法的定义:一般地,由证明pq转向证明綈qrtt与假设矛盾,或与某个真命题矛盾,从而判定綈q为假,推出q为真的方法,叫做反证法(2)应用反证法证明数学命题的一般步骤:分清命题的条件和结论;做出与命题结论相矛盾的假定;由假定出发,应用正确的推理方法,推出矛盾的结果;断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明命题为真概念方法微思考1直接
3、证明中的综合法是演绎推理吗?提示是用综合法证明时常省略大前提2综合法与分析法的推理过程有何区别?提示综合法是执因索果,分析法是执果索因,推理方式是互逆的3反证法是“要证原命题成立,只需证其逆否命题成立”的推理方法吗?提示不是反证法是命题中“p与綈p”关系的应用题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)综合法是直接证明,分析法是间接证明()(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件()(3)用反证法证明结论“ab”时,应假设“ab”()(4)反证法是指将结论和条件同时否定,推出矛盾()(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展
4、现解决问题的过程()(6)证明不等式Q BPQCPQ2,又P0,Q0,PQ.3设实数a,b,c成等比数列,非零实数x,y分别为a与b,b与c的等差中项,则等于()A1 B2 C4 D6答案B解析由题意,得x,y,b2ac,xy,2.题组三易错自纠4若a,b,c为实数,且ab0,则下列命题正确的是()Aac2abb2C.答案B解析a2aba(ab),ab0,ab0,a2ab.又abb2b(ab)0,abb2,由得a2abb2.5用反证法证明命题:“设a,b为实数,则方程x3axb0至少有一个实根”时,要作的假设是()A方程x3axb0没有实根B方程x3axb0至多有一个实根C方程x3axb0至多
5、有两个实根D方程x3axb0恰好有两个实根答案A解析方程x3axb0至少有一个实根的反面是方程x3axb0没有实根,故选A.6在ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,a,b,c成等比数列,则ABC的形状为_答案等边三角形解析由题意得2BAC,ABC,B,又b2ac,由余弦定理得b2a2c22accos Ba2c2ac,a2c22ac0,即(ac)20,ac,AC,ABC,ABC为等边三角形.题型一综合法的应用例1 已知a,b,c0,abc1.求证:(1);(2).证明(1)()2(abc)222(abc)(ab)(bc)(ca)3,(当且仅当abc时取等号
6、)(2)a0,3a11,(3a1)24,33a,同理得33b,33c,以上三式相加得493(abc)6,(当且仅当abc时取等号)思维升华 (1)从已知出发,逐步推理直到得出所证结论的方法为综合法;(2)计算题的计算过程也是根据已知的式子进行逐步推导的过程,也是使用的综合法跟踪训练1 设Tn是数列an的前n项之积,并满足:Tn1an.(1)证明:数列是等差数列;(2)令bn,证明:bn的前n项和Sn.证明(1)an1 1,1,又T11a1a1,a1,2,数列是以2为首项,公差为1的等差数列(2)(n1)1,n1an(nN),bn ,Snb1b2bn0,证明:a2.证明要证 a2,只需证 (2)
7、因为a0,所以(2)0,所以只需证22,即2(2)84,只需证a2.因为a0,a2显然成立,所以要证的不等式成立题型三反证法的应用例3 设a0,b0,且ab.证明:(1)ab2;(2)a2a2与b2b0,b0,得ab1.(1)由均值不等式及ab1,有ab22,即ab2,当且仅当ab1时,等号成立(2)假设a2a2与b2b2同时成立,则由a2a0,得0a1;同理,0b1,从而ab1,这与ab1矛盾故a2a2与b2b2不可能同时成立思维升华 反证法的一般步骤:(1)分清命题的条件与结论;(2)作出与命题的结论相矛盾的假设;(3)由假设出发,应用演绎推理的方法,推出矛盾的结果;(4)断定产生矛盾结果
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版高考数学大一轮复习 第七章 不等式、推理与证明 2020 高考 数学 一轮 复习 第七 不等式 推理 证明
链接地址:https://www.77wenku.com/p-121521.html