2020版高考数学大一轮复习 第三章 导数及其应用 3.1 导数的概念及运算
《2020版高考数学大一轮复习 第三章 导数及其应用 3.1 导数的概念及运算》由会员分享,可在线阅读,更多相关《2020版高考数学大一轮复习 第三章 导数及其应用 3.1 导数的概念及运算(13页珍藏版)》请在七七文库上搜索。
1、3.1导数的概念及运算最新考纲考情考向分析1.了解导数概念的实际背景2.通过函数图象直观理解导数的几何意义3.能根据导数定义求函数yc(c为常数),yx,yx2,yx3,y,y的导数4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.导数的概念和运算是高考的必考内容,一般渗透在导数的应用中考查;导数的几何意义常与解析几何中的直线交汇考查;题型为选择题或解答题的第(1)问,低档难度.1.平均变化率一般地,已知函数yf(x),x0,x1是其定义域内不同的两点,记xx1x0,yy1y0f(x1)f(x0)f(x0x)f(x0),则当x0时,商,称作函数yf(x)在区间x0,x0x(
2、或x0x,x0)的平均变化率.2.函数yf(x)在xx0处的导数(1)定义称函数yf(x)在xx0处的瞬时变化率 为函数yf(x)在xx0处的导数,记作f(x0),即f(x0) .(2)几何意义函数f(x)在点x0处的导数f(x0)的几何意义是在曲线yf(x)上点(x0,f(x0)处的切线的斜率.相应地,切线方程为yf(x0)f(x0)(xx0).3.函数f(x)的导函数如果f(x)在开区间(a,b)内每一点x都是可导的,则称f(x)在区间(a,b)可导.这样,对开区间(a,b)内每个值x,都对应一个确定的导数f(x).于是,在区间(a,b)内,f(x)构成一个新的函数,我们把这个函数称为函数
3、yf(x)的导函数,记为f(x)或y(或yx).4.基本初等函数的导数公式表yf(x)yf(x)ycy0yxn(nN)ynxn1,n为正整数yx(x0,0且Q)yx1,为有理数yax(a0,a1)yaxln aylogax(a0,a1,x0)yysin xycos xycos xysin x5.导数的四则运算法则设f(x),g(x)是可导的,则(1)(f(x)g(x)f(x)g(x);(2)f(x)g(x)f(x)g(x)f(x)g(x);(3)(g(x)0).概念方法微思考1根据f(x)的几何意义思考一下,|f(x)|增大,曲线f(x)的形状有何变化?提示|f(x)|越大,曲线f(x)的形状
4、越来越陡峭2直线与曲线相切,是不是直线与曲线只有一个公共点?提示不一定题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)f(x0)是函数yf(x)在xx0附近的平均变化率()(2)f(x0)f(x0).()(3)(2x)x2x1.()题组二教材改编2若f(x)xex,则f(1)_.答案2e解析f(x)exxex,f(1)2e.3曲线y1在点(1,1)处的切线方程为_答案2xy10解析y,y|x12.所求切线方程为2xy10.题组三易错自纠4如图所示为函数yf(x),yg(x)的导函数的图象,那么yf(x),yg(x)的图象可能是()答案D解析由yf(x)的图象知,yf(x)在
5、(0,)上单调递减,说明函数yf(x)的切线的斜率在(0,)上也单调递减,故可排除A,C.又由图象知yf(x)与yg(x)的图象在xx0处相交,说明yf(x)与yg(x)的图象在xx0处的切线的斜率相同,故可排除B.故选D.5若f(x),则f_.答案解析f(x),f.6(2017天津)已知aR,设函数f(x)axln x的图象在点(1,f(1)处的切线为l,则l在y轴上的截距为 答案1解析f(x)a,f(1)a1.又f(1)a,切线l的斜率为a1,且过点(1,a),切线l的方程为ya(a1)(x1)令x0,得y1,故l在y轴上的截距为1.题型一导数的计算1已知f(x)sin ,则f(x) .答
6、案cos x解析因为ysin sin x,所以y(sin x)cos x.2已知y,则y_.答案解析y.3f(x)x(2 019ln x),若f(x0)2 020,则x0 .答案1解析f(x)2 019ln xx2 020ln x,由f(x0)2 020,得2 020ln x02 020,x01.4若f(x)x22xf(1),则f(0) .答案4解析f(x)2x2f(1),f(1)22f(1),即f(1)2,f(x)2x4,f(0)4.思维升华 1.求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,尽量避免不必要的商的求导法则,这样可以减少运算量,提高运算速度减少差错(2)若函数
7、为根式形式,可先化为分数指数幂,再求导题型二导数的几何意义命题点1求切线方程例1 (1)已知函数f(x1),则曲线yf(x)在点(1,f(1)处切线的斜率为()A1 B1 C2 D2答案A解析由f(x1),知f(x)2.f(x),f(1)1.由导数的几何意义知,所求切线的斜率k1.(2)已知函数f(x)xln x,若直线l过点(0,1),并且与曲线yf(x)相切,则直线l的方程为 答案xy10解析点(0,1)不在曲线f(x)xln x上,设切点为(x0,y0)又f(x)1ln x,直线l的方程为y1(1ln x0)x.由解得x01,y00.直线l的方程为yx1,即xy10.命题点2求参数的值例
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版高考数学大一轮复习 第三章 导数及其应用 2020 高考 数学 一轮 复习 第三 导数 及其 应用
链接地址:https://www.77wenku.com/p-121522.html