2020版高考数学大一轮复习 第十二章 系列4选讲 12.2第2课时 不等式的证明
《2020版高考数学大一轮复习 第十二章 系列4选讲 12.2第2课时 不等式的证明》由会员分享,可在线阅读,更多相关《2020版高考数学大一轮复习 第十二章 系列4选讲 12.2第2课时 不等式的证明(9页珍藏版)》请在七七文库上搜索。
1、第2课时不等式的证明最新考纲考情考向分析通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.主要考查用比较法、综合法、分析法证明不等式,题型为解答题,中档难度.1.比较法(1)作差比较法知道abab0,ababb,只要证明ab0即可,这种方法称为作差比较法.(2)作商比较法由ab01且a0,b0,因此当a0,b0时,要证明ab,只要证明1即可,这种方法称为作商比较法.2.综合法从已知条件出发,利用不等式的有关性质或定理,经过推理论证,最终推导出所要证明的不等式成立,这种证明方法叫做综合法,即“由因导果”的方法.3.分析法从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等
2、式归结为一个已成立的不等式(已知条件、定理等),从而得出要证的不等式成立,这种证明方法叫做分析法,即“执果索因”的方法.4.反证法先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立.5.放缩法证明不等式时,通过把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.概念方法微思考1.综合法与分析法有何内在联系?提示综合法往往是分析法的相反过程,其表述简单、条理清楚,当问题比较复杂时,通常把分析法和综合法结合起来使用,以分析法寻找证
3、明的思路,而用综合法叙述、表达整个证明过程.2.分析法的过程中为什么要使用“要证”,“只需证”这样的连接“关键词”?提示因为“要证”“只需证”这些词说明了分析法需要寻求的是充分条件,符合分析法的思维是逆向思维的特点,因此在证题时,这些词是必不可少的.题组一思考辨析1.判断下列结论是否正确(请在括号中打“”或“”)(1)当a0,b0时,.()(2)用反证法证明命题“a,b,c全为0”的假设为“a,b,c全不为0”.()(3)若实数x,y适合不等式xy1,xy2,则x0,y0.()(4)若ma2b,nab21,则nm.()题组二教材改编2.已知a,bR,ab2,则的最小值为()A.1 B.2C.4
4、 D.8答案B解析因为a,bR,且ab2,所以(ab)2224,所以2,即的最小值为2(当且仅当ab1时,“”成立).故选B.3.若a,b,mR,且ab,则下列不等式一定成立的是()A. B.C. D.b.所以0,即,故选B.题组三易错自纠4.已知abc0,abbcac0,abc0,用反证法求证a0,b0,c0时的反设为()A.a0,b0,c0,c0C.a,b,c不全是正数 D.abcb1,xa,yb,则x与y的大小关系是()A.xy B.xb1,得ab1,ab0,所以0,即xy0,所以xy.故选A.6.若a,b,c,则a,b,c的大小关系为()A.abc B.acb C.bca D.cab答
5、案A解析“分子”有理化得a,b,c,abc.题型一用综合法与分析法证明不等式例1 (1)已知x,y均为正数,且xy,求证:2x2y3;(2)设a,b,c0且abbcca1,求证:abc.证明(1)因为x0,y0,xy0,2x2y2(xy)(xy)(xy)33(当且仅当xy1时,等号成立),所以2x2y3.(2)因为a,b,c0,所以要证abc,只需证明(abc)23.即证a2b2c22(abbcca)3,而abbcca1,故需证明a2b2c22(abbcca)3(abbcca),即证a2b2c2abbcca.而abbccaa2b2c2(当且仅当abc时等号成立)成立,所以原不等式成立.思维升华
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版高考数学大一轮复习 第十二章 系列4选讲 12 2020 高考 数学 一轮 复习 第十二 系列
链接地址:https://www.77wenku.com/p-121531.html