中考总复习:正多边形与圆的有关的证明和计算--知识讲解(提高)
《中考总复习:正多边形与圆的有关的证明和计算--知识讲解(提高)》由会员分享,可在线阅读,更多相关《中考总复习:正多边形与圆的有关的证明和计算--知识讲解(提高)(11页珍藏版)》请在七七文库上搜索。
1、中考总复习:正多边形与圆的有关的证明和计算知识讲解(提高)责编:常春芳【考纲要求】1了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;2结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】 【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心正多边形的外接圆的圆心.(3)正多边形的半径正多边形的外接圆的半径.(4)正多边形的边心
2、距正多边形中心到正多边形各边的距离.(正多边形内切圆的半径.)(5)正多边形的中心角正多边形每一边所对的外接圆的圆心角.2、正多边形与圆的关系:(1)将一个圆n(n3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.(2)这个圆是这个正多边形的外接圆. (3)把圆分成n(n3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.这个圆叫做正n边形的内切圆.(4)任何正n边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3、正多边形性质:(1)任何正多边形都有一个外接圆.(2) 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称
3、轴都通过正n边形的中心当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.要点诠释:(1)正n边形的有n个相等的外角,而正n边形的外角和为360度,所以正n边形每个外角的度数是;所以正n边形的中心角等于它的外角.(2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.考点二、圆中有关计算1圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径
4、为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.弓形的面积(1)由弦及其所对的劣弧组成的图形,S弓形=S扇形-SOAB;(2)由弦及其所对的优弧组成的弓形,S弓形=S扇形+SOAB.OABABOmABOm要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量
5、就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、正多边形有关计算1如图,矩形ABCD中,AB=4,以点B为圆心,BA为半径画弧交BC于点E,以点O为圆心的O与弧AE,边AD,DC都相切把扇形BAE作一个圆锥的侧面,该圆锥的底面圆恰好是O,则AD的长为()A.4B. C.D.5【思路点拨】首先求得弧AE的长,然后利用弧AE的长正好等于圆的底面周长,求得O的半径,则BE的长加上半径即为AD的长【答案】D;【解析】解:AB=4,B=90,圆锥的底面圆恰好是O,O的周长为2,O的半径为1
6、,AD=BC=BE+EC=4+1=5.故选D【总结升华】本题考查了圆锥的计算及相切两圆的性质,解题的关键是熟记弧长的计算公式.举一反三:【高清课堂:正多边形与圆的有关证明与计算 自主学习7】【变式1】如图,两个相同的正六边形,其中一个正多边形的顶点在另一个正多边形外接圆圆心O处求重叠部分面积与阴影部分面积之比.【答案】解:连结OA、OB、OC,设OA交AB于K,OE交CD于H,AOK=AOC-KOC=120-KOC,COH=120-KOC,AOK=COH,又OAK=OCH=60,OA=OC,AOKCOH,由AOKCOH,得S五边形OKBCH=S四边形ABCO=2SOBC,S阴影=S正六边形AB
7、CDEF-S五边形OKBCH=6SOBC-2SOBC=4SOBC.S五边形OKBCH:S阴影= . 即重叠部分面积与阴影部分面积之比为: . 【高清课堂:正多边形与圆的有关证明与计算 自主学习8】【变式2】 已知:正十边形的半径是R,求证:它的边长为. 【答案】证明:作OAB的平分线AM交OB于M,则O=OAM=36,AMB=B=72, OM=MA=AB,则ABMOAB得:用R,a10分别表示OA,AB,BM,代入以上比例式整理得a102+ Ra10-R2=0,解关于a10的一元二次方程得(负值已舍去). 类型二、正多边形与圆综合运用2(2014江西模拟)如图,AG是正八边形ABCDEFGH的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 复习 正多边形 有关 证明 计算 知识 讲解 提高
链接地址:https://www.77wenku.com/p-121985.html