中考总复习:图形的变换--知识讲解(提高)
《中考总复习:图形的变换--知识讲解(提高)》由会员分享,可在线阅读,更多相关《中考总复习:图形的变换--知识讲解(提高)(14页珍藏版)》请在七七文库上搜索。
1、中考总复习:图形的变换-知识讲解(提高)【考纲要求】1.通过具体实例认识轴对称、平移、旋转,探索它们的基本性质;2.能够按要求作出简单平面图形经过轴对称、平移、旋转后的图形,能作出简单平面图形经过一次或两次轴对称后的图形;3.探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及其相关性质.4.探索图形之间的变换关系(轴对称、平移、旋转及其组合);5.利用轴对称、平移、旋转及其组合进行图案设计;认识和欣赏轴对称、平移、旋转在现实生活中的应用.【知识网络】【考点梳理】考点一、平移变换1. 平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移
2、不改变图形的形状和大小【要点诠释】(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换;(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据;(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据2平移的基本性质:由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应角相等【要点诠释】(1)要注意正确找出“对应线段,对应角”,
3、从而正确表达基本性质的特征;(2)“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据考点二、轴对称变换1轴对称与轴对称图形轴对称:把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点.轴对称图形:把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2轴对称变换的性质关于直线对称的两个图形是全等图形.如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.两个图形关于某直线对称,如果它们对应线段或延长线相
4、交,那么交点在对称轴上.如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.3轴对称作图步骤找出已知图形的关键点,过关键点作对称轴的垂线,并延长至2倍,得到各点的对称点按原图形的连结方式顺次连结对称点即得所作图形.翻折变换:图形翻折问题是近年来中考的一个热点,其实质是轴对称问题,折叠重合部分必全等,折痕所在直线就是这两个全等形的对称轴,互相重合的两点(对称点)连线必被折痕垂直平分.【要点诠释】翻折的规律是,折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等,折叠图形中有相似三角形,常用勾股定理.考点三、旋转变换1旋转概念:把一个图形绕着某一点O转动一个角度的图形变换
5、叫做旋转.点O叫做旋转中心,转动的角叫做旋转角.旋转变换的性质图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等,旋转过程中,图形的形状、大小都没有发生变化.旋转作图步骤分析题目要求,找出旋转中心,确定旋转角.分析所作图形,找出构成图形的关键点.沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点. 按原图形连结方式顺次连结各对应点.【要点诠释】图形变换与图案设计的基本步骤确定图案的设计主题及要求;分析设计图案所给定的基本图案;利用平移、旋转
6、、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;对图案进行修饰,完成图案.2平移、旋转和轴对称之间的联系一个图形沿两条平行直线翻折(轴对称)两次相当于一次平移,沿不平行的两条直线翻折两次相当于一次旋转,其旋转角等于两直线交角的2倍.【典型例题】类型一、平移变换1. 如图,将矩形ABCD沿对角线AC剪开,再把ACD沿CA方向平移得到ACD(1)证明AADCCB;(2)若ACB=30,试问当点C在线段AC上的什么位置时,四边形ABCD是菱形,并请说明理由 【思路点拨】(1)根据已知利用SAS判定AADCCB;(2)由已知可推出四边形ABCD是平行四边形,只要再证明一组邻边相等即可
7、确定四边形ABCD是菱形,由已知可得到BC=AC,AB=AC,从而得到AB=BC,所以四边形ABCD是菱形【答案与解析】(1)证明:四边形ABCD是矩形,ACD由ACD平移得到,AD=AD=CB,AA=CC,ADADBCDAC=BCAAADCCB(2)解:当点C是线段AC的中点时,四边形ABCD是菱形理由如下:四边形ABCD是矩形,ACD由ACD平移得到,CD=CD=AB由(1)知AD=CB四边形ABCD是平行四边形在RtABC中,点C是线段AC的中点,BC=AC而ACB=30,AB=ACAB=BC四边形ABCD是菱形【总结升华】本题考查了平移的性质特点以及全等的判定和菱形的判定,注意对这两个
8、判定定理的准确掌握,考查学生综合运用数学的能力2操作与探究:(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段AB,其中点A,B的对应点分别为A,B如图1,若点A表示的数是-3,则点A表示的数是_;若点B表示的数是2,则点B表示的数是_;已知线段AB上的点E经过上述操作后得到的对应点E与点E重合,则点E表示的数是_ (2)如图2,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上
9、平移n个单位(m0,n0),得到正方形ABCD及其内部的点,其中点A,B的对应点分别为A,B已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F与点F重合,求点F的坐标 【思路点拨】(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A,设点B表示的数为a,根据题意列出方程求解即可得到点B表示的数,设点E表示的数为b,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F的坐标为(x,y),根据平移规律列出方程组求解即可【答案与解析】(1)点A:-3+1=-1+1=0,设点B表示的数为a,则a+1=2,解得a
10、=3,设点E表示的数为b,则b+1=b,解得b=;故答案为:0;3;.(2)根据题意得,解得,设点F的坐标为(x,y),对应点F与点F重合,x+=x,y+2=y,解得x=1,y=4,所以,点F的坐标为(1,4)【总结升华】耐心细致的读懂题目信息是解答本题的关键举一反三: 【变式】如图,若将边长为的两个互相重合的正方形纸片沿对角线翻折成等腰直角三角形后,再抽出一个等腰直角三角形沿移动,若重叠部分的面积是,则移动的距离等于 .【答案】根据题意得:ABAB,BCBC,APC=B=90,A=CAP=ACP=45,APC是等腰直角三角形,APC的面积是1cm2,SAPC=APPC=1(cm2),AP=P
11、C=cm,AC=2cm,由于原等腰直角三角形的斜边是2cm,所以平移的距离是:2-2(cm)类型二、轴对称变换3(2016贵阳模拟)如图,矩形ABCD中,AB=6,BC=8,点E是射线CB上的一个动点,把DCE沿DE折叠,点C的对应点为C(1)若点C刚好落在对角线BD上时,BC= ; (2)若点C刚好落在线段AB的垂直平分线上时,求CE的长;(3)若点C刚好落在线段AD的垂直平分线上时,求CE的长【思路点拨】(1)根据点B,C,D在同一直线上得出BC=BDDC=BDDC求出即可;(2)利用垂直平分线的性质得出CC=DC=DC,则DCC是等边三角形,进而利用勾股定理得出答案;(3)利用当点C在矩
12、形内部时,当点C在矩形外部时,分别求出即可【答案与解析】解:(1)如图1,点B,C,D在同一直线上,BC=BDDC=BDDC=106=4;故答案为:4;(2)如图2,连接CC,点C在AB的垂直平分线上,点C在DC的垂直平分线上,CC=DC=DC,则DCC是等边三角形,设CE=x,易得DE=2x,由勾股定理得:(2x)2x2=62,解得:x=2,即CE的长为2;(3)作AD的垂直平分线,交AD于点M,交BC于点N,分两种情况讨论:当点C在矩形内部时,如图3,点C在AD的垂直平分线上,DM=4,DC=6,由勾股定理得:MC=2,NC=62,设EC=y,则CE=y,NE=4y,故NC2+NE2=CE
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 复习 图形 变换 知识 讲解 提高
链接地址:https://www.77wenku.com/p-122023.html