中考总复习:锐角三角函数综合复习--知识讲解(提高)
《中考总复习:锐角三角函数综合复习--知识讲解(提高)》由会员分享,可在线阅读,更多相关《中考总复习:锐角三角函数综合复习--知识讲解(提高)(16页珍藏版)》请在七七文库上搜索。
1、中考总复习:锐角三角函数综合复习知识讲解(提高)责编:常春芳【考纲要求】1.理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题.【知识网络】 【考点梳理】考点一、锐角三角函数的概念如图所示,在RtABC中,C90,A所对的边BC记为a,叫做A的对边,也叫做B的邻边,B所对的边AC记为b,叫做B的对边,也是A的邻边,直角C所对的边AB记为c,叫做斜边锐角A的对边与斜边的比叫做A的正弦,记作sinA,即
2、;锐角A的邻边与斜边的比叫做A的余弦,记作cosA,即;锐角A的对边与邻边的比叫做A的正切,记作tanA,即.同理;要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值角的度数确定时,其比值不变,角的度数变化时,比值也随之变化(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,不能理解成sin与A,cos与A,tan与A的乘积书写时习惯上省略A的角的记号“”,但对三个大写字母表示成的角(如AEF),其正切应写成“tanAEF”,不能写成“tanAEF”;另外,、常写成、(3)任何一个锐角都有相应的锐角三角函数值
3、,不因这个角不在某个三角形中而不存在(4)由锐角三角函数的定义知:当角度在0A90之间变化时,tanA0考点二、特殊角的三角函数值利用三角函数的定义,可求出0、30、45、60、90角的各三角函数值,归纳如下: 要点诠释:(1)通过该表可以方便地知道0、30、45、60、90角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角(2)仔细研究表中数值的规律会发现: 、的值依次为0、1,而、的值的顺序正好相反,、的值依次增大,其变化规律可以总结为:当角度在0A90之间变化时, 正弦、正切值随锐角度数的增大(或减小)而增大(或减小) 余弦值
4、随锐角度数的增大(或减小)而减小(或增大)考点三、锐角三角函数之间的关系如图所示,在RtABC中,C=90(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在RtABC中,C=90,A、B、C所对的边分别为a、b、c,则有:三边之间的关系:a2+b2=c2(勾股定理).锐角之间的关系:A+B=
5、90.边角之间的关系:,.,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤RtABC两边两直角边(a,b)由求A,B=90A,斜边,一直角边(如c,a)由求A,B=90A,一边一角一直角边和一锐角锐角、邻边(如A,b)B=90A,锐角、对边(如A,a)B=90A,斜边、锐角(如c,A)B=90A,要点诠释:1在遇到解直角三角形的实际问题时,最好是先画出一个直角
6、三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的
7、问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图中,目标方向PA,PB,PC的方位角分别为是
8、40,135,245.(4)方向角:指北或指南方向线与目标方向线所成的小于90的水平角,叫做方向角,如图中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30,南偏东45,南偏西80,北偏西60.特别如:东南方向指的是南偏东45,东北方向指的是北偏东45,西南方向指的是南偏西45,西北方向指的是北偏西45.要点诠释:1解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正
9、确画出示意图,进而根据条件选择合适的方法求解.考点七、解直角三角形相关的知识如图所示,在RtABC中,C90, (1)三边之间的关系:; (2)两锐角之间的关系:A+B90; (3)边与角之间的关系:, (4) 如图,若直角三角形ABC中,CDAB于点D,设CDh,ADq,DBp,则由CBDABC,得a2pc;由CADBAC,得b2qc;由ACDCBD,得h2pq;由ACDABC或由ABC面积,得abch(5)如图所示,若CD是直角三角形ABC中斜边上的中线,则 CDADBDAB; 点D是RtABC的外心,外接圆半径RAB(6)如图所示,若r是直角三角形ABC的内切圆半径,则直角三角形的面积:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 复习 锐角 三角函数 综合 知识 讲解 提高
链接地址:https://www.77wenku.com/p-122050.html