中考总复习:函数综合--知识讲解(提高)
《中考总复习:函数综合--知识讲解(提高)》由会员分享,可在线阅读,更多相关《中考总复习:函数综合--知识讲解(提高)(18页珍藏版)》请在七七文库上搜索。
1、中考总复习:函数综合知识讲解(提高)责编:常春芳【考纲要求】1平面直角坐标系的有关知识 平面直角坐标系中各象限和坐标轴上的点的坐标的特征,求点关于坐标轴、坐标原点的对称点的坐标,求线段的长度,几何图形的面积,求某些点的坐标等.2函数的有关概念 求函数自变量的取值范围,求函数值、函数的图象、函数的表示方法3函数的图象和性质常见的题目是确定图象的位置,利用函数的图象确定某些字母的取值,利用函数的性质解决某些问题利用数形结合思想来说明函数值的变化趋势,又能反过来判定函数图象的位置4函数的解析式求函数的解析式,求抛物线的顶点坐标、对称轴方程,利用函数的解析式来求某些字母或代数式的值 一次函数、反比例函
2、数和二次函数常与一元一次方程、一元二次方程、三角形的面积、边角关系、圆的切线、圆的有关线段组成综合题【知识网络】 【考点梳理】考点一、平面直角坐标系1相关概念 (1)平面直角坐标系 (2)象限 (3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标 (1)坐标轴上的点 (2)一三或二四象限角平分线上的点的坐标 (3)平行于坐标轴的直线上的点的坐标 (4)关于x轴、y轴、原点对称的点的坐标4.距离(1)平面上一点到x轴、y轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离(3)平面上任意两点间的距离5.坐标方法的简单应用(1)利用坐标表示地理位置(2)利用坐标表示平移要点诠释
3、: 点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于;(2)点P(x,y)到y轴的距离等于;(3)点P(x,y)到原点的距离等于.考点二、函数及其图象1.变量与常量2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象要点诠释:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点三、一次函数1.正比例函数的意义 2.一次函数的意义 3.正比例函数与一次函数的性
4、质4. 一次函数的图象与二元一次方程组的关系5.利用一次函数解决实际问题要点诠释: 确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k;确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b.解这类问题的一般方法是待定系数法.考点四、反比例函数1.反比例函数的概念2.反比例函数的图象及性质3.利用反比例函数解决实际问题要点诠释: 反比例函数中反比例系数的几何意义,如下图,过反比例函数图像上任一点 作x轴、y轴的垂线PM,PN,垂足为M、N,则所得的矩形PMON的面积S=PMPN=. .考点五、二次函数1.二次函数的概念2.二次函数的图象及性质3.二次函数与一元二次方程的关
5、系4.利用二次函数解决实际问题要点诠释:1、两点间距离公式(当遇到没有思路的问题时,可用此方法拓展思路,以寻求解题方法) 如图:点A坐标为(x1,y1),点B坐标为(x2,y2),则AB间的距离,即线段AB的长度为. 2、函数平移规律:左加右减、上加下减.3、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当时,当时,;如果在此范围内,y随x的增大而减小,则当时,当时,.
6、4、抛物线的对称变换关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是.关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是.关于原点对称 关于原点对称后,得到的解析式是; 关于原点对称后,得到的解析式是.关于顶点对称 关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是关于点对称 关于点对称后,得到的解析式是.根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变求抛物线的对称图象的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其
7、对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式考点六、函数的应用1.一次函数的实际应用2. 反比例函数的实际应用3. 二次函数的实际应用要点诠释:分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论.在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型.【典型例题】类型一、用函数的概念与性质解题1在平面直角坐标系中,点A的坐标是(4,0),点P是第一象限内的直线y=6x上的点,O是坐标原点(如图所示): (1)P点坐标设为(x, y) ,写出OPA的面积S的关
8、系式; (2)S与y具有怎样的函数关系,写出这函数中自变量y的取值范围; (3)S与x具有怎样的函数关系?写出自变量x的取值范围; (4)如果把x看作S的函数时,求这个函数解析式,并写出这函数中自变量取值范围; (5)当S=10时,求P的坐标; (6)在直线y=6x上,求一点P,使POA是以OA为底的等腰三角形. 【思路点拨】本例的第(1)问是“SOPA”与“y”的对应关系,呈现正比例函数关系,y是自变量;第(3)问是“S”与“x”的对应关系,呈现一次函数关系,x是自变量;第(4)问是“x”与“S”的对应关系,呈现一次函数关系,S是自变量,不要被是什么字母所迷惑,而是要从“对应关系”这个本质去
9、考虑,分清哪个是函数,哪个是自变量. 【答案与解析】解:(1)过P点作x轴的垂线,交于Q, SOPA=|OA|PQ|=4y=2y. (2)S与y成正比例函数,即S=2y, 自变量y的取值范围是0y6. (3) y=6-x, S=2y=2(6-x)=12-2x, S=-2x+12成为一次函数关系,自变量x的取值范围是0x6. (4)把x看作S的函数, 将S=-2x+12变形为:x=,即这个函数的解析式为:x=-+6. 自变量S的取值范围是:0S12. (5)当S=10时,代入(3)、(4)得:x=-+6=-+6=1, S=2y, 10=2y, y=5, P点的坐标为(1,5). (6)以OA为底
10、的等腰OPA中, OA=4, OA的中点为2,x=2, y=6-x, y=4. 即P点坐标为(2,4). 【总结升华】数学从对运动的研究中引出了基本的函数概念,函数的本质就是对应,函数关系就是变量之间的对应关系,是一种特殊的对应关系. 函数的概念中,有两个变量,要分清对应关系,哪一个字母是函数,哪一个是自变量.比如“把x看作S的函数”时,对应关系为用S表示x,其中S是自变量,x是函数. 举一反三:【高清课程名称:函数综合2 高清ID号:369112 关联的位置名称(播放点名称):经典例题1】【变式】已知关于x的一元二次方程有实数根,k为正整数. (1)求k的值; (2)当此方程有两个非零的整数
11、根时,将关于x的二次函数的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线与此图象有两公共点时,b的取值范围. 【答案】解:(1)由题意得,0 3 为正整数,1,2,3 (2) 当时,方程有一个根为零;当时,方程无整数根; 当时,方程有两个非零的整数根综上所述,和不合题意,舍去;符合题意当时,二次函数为,把它的图象向下平移8个单位得到的图象的解析式为 (3)设二次函数的图象与轴交于、 两点,则 依题意翻折后的图象如图所示当直线经过A点时,可得;当直
12、线经过B点时,可得由图象可知,符合题意的b的取值范围 为 2如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连结DP,过点A作AEDP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是( ) (A) (B) (C) (D)【思路点拨】本题应利用APD的面积的不同表示方法求得y与x的函数关系;或由ADEDPC得到 y与x的函数关系【答案】C ;【解析】这是一个动点问题.很容易由ADEDPC得到,从而得出表达式;也可连结PA,由得到表达式,排除(A)、(B).因为点P在BC边上运动,当点P与点C重合时,DP与边DC重合,此时DP最短,x=3;当点P与点B重合时
13、,DP与对角线BD重合,此时DP最长,x=5,即x的临界值是3和5.又因为当x取3和5时,线段AE的长可具体求出,因此x的取值范围是3x5.正确答案选(C).【总结升华】解决动点问题的常用策略是“以静制动,动静结合”.找准特殊点,是求出临界值的关键.动态问题也是中考试题中的常见题型,要引起重视.举一反三:【变式】小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车.车修好后,因怕耽误上课,他比修车前加快骑车速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合这个同学行驶情况的图象大致是( ).【答案】A表示小明一直在停下来修车,而没继续
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 复习 函数 综合 知识 讲解 提高
链接地址:https://www.77wenku.com/p-122068.html