中考冲刺:几何综合问题--知识讲解(提高)
《中考冲刺:几何综合问题--知识讲解(提高)》由会员分享,可在线阅读,更多相关《中考冲刺:几何综合问题--知识讲解(提高)(16页珍藏版)》请在七七文库上搜索。
1、中考冲刺:几何综合问题知识讲解(提高)责编:常春芳【中考展望】 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选择题、填空题、几何推理计算题以及代数与几何的综合计算题,还有更注重考查学生分析问题和解决问题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生
2、分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合
3、题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1(2016太原校级自主招生)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE,过点E作E
4、GDE,使EG=DE,连接FG,FC(1)请判断:FG与CE的数量关系和位置关系;(不要求证明)(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断予以证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断【思路点拨】(1)结论:FG=CE,FGCE如图1中,设DE与CF交于点M,首先证明CBFDCE,推出DECF,再证明四边形EGFC是平行四边形即可(2)结论仍然成立如图2中,设DE与CF交于点M,首先证明CBFDCE,推出DECF,再证明四边形EGFC是平行四边形即可(3)
5、结论仍然成立如图3中,设DE与FC的延长线交于点M,证明方法类似【答案与解析】解:(1)结论:FG=CE,FGCE理由:如图1中,设DE与CF交于点M四边形ABCD是正方形,BC=CD,ABC=DCE=90,在CBF和DCE中,CBFDCE,BCF=CDE,CF=DE,BCF+DCM=90,CDE+DCM=90,CMD=90,CFDE,GEDE,EGCF,EG=DE,CF=DE,EG=CF,四边形EGFC是平行四边形GF=EC,GF=EC,GFEC(2)结论仍然成立理由:如图2中,设DE与CF交于点M四边形ABCD是正方形,BC=CD,ABC=DCE=90,在CBF和DCE中,CBFDCE,B
6、CF=CDE,CF=DE,BCF+DCM=90,CDE+DCM=90,CMD=90,CFDE,GEDE,EGCF,EG=DE,CF=DE,EG=CF,四边形EGFC是平行四边形GF=EC,GF=EC,GFEC(3)结论仍然成立理由:如图3中,设DE与FC的延长线交于点M四边形ABCD是正方形,BC=CD,ABC=DCE=90,CBF=DCE=90在CBF和DCE中,CBFDCE,BCF=CDE,CF=DEBCF+DCM=90,CDE+DCM=90,CMD=90,CFDE,GEDE,EGCF,EG=DE,CF=DE,EG=CF,四边形EGFC是平行四边形GF=EC,GF=EC,GFEC【总结升华
7、】本题考查四边形综合题、正方形的性质、平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形,注意这类题目的解题规律,图形变了,条件不变,证明的方法思路完全一样,属于中考常考题型举一反三:【变式】已知:如图(1),射线射线,是它们的公垂线,点、分别在、上运动(点与点不重合、点与点不重合),是边上的动点(点与、不重合),在运动过程中始终保持,且(1)求证:;(2)如图(2),当点为边的中点时,求证:;(3)设,请探究:的周长是否与值有关?若有关,请用含有的代数式表示的周长;若无关,请说明理由 【答案】(1)证明:, 又, (2)证明:如图,过点作,交于点, 是的中点
8、,容易证明 在中, , (3)解:的周长, 设,则 , 即 由(1)知, 的周长的周长 的周长与值无关 2在ABC中,ACB=45点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF(1)如果AB=AC如图,且点D在线段BC上运动试判断线段CF与BD之间的位置关系,并证明你的结论(2)如果ABAC,如图,且点D在线段BC上运动(1)中结论是否成立,为什么?(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC,CD=,求线段CP的长(用含的式子表示) 【思路点拨】(1)由题干可以发现,正方形中四条边的垂直关系是不动的,于是利用角度
9、的互余关系进行传递,就可以得解.(2)是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑一个特殊的条件就行,和上题一样找AC的垂线,就可以变成第一问的条件,然后一样求解.(3)D在BC之间运动和它在BC延长线上运动时的位置是不一样的,所以已给的线段长度就需要分情况去考虑到底是4+X还是4-X.分类讨论之后利用相似三角形的比例关系即可求出CP.【答案与解析】(1)结论:CFBD; 证明如下:AB=AC ,ACB=45,ABC=45由正方形ADEF得 AD=AF ,DAF=BAC =90, DAB=FAC,DABFAC , ACF=ABDBCF=ACB+ACF= 90即 CFBD(2)C
10、FBD(1)中结论仍成立 理由是:过点A作AGAC交BC于点G,AC=AG可证:GADCAF ACF=AGD=45 BCF=ACB+ACF= 90 即CFBD (3)过点A作AQBC交CB的延长线于点Q, 点D在线段BC上运动时,BCA=45,可求出AQ= CQ=4DQ=4-x,易证AQDDCP, , 点D在线段BC延长线上运动时,BCA=45,AQ=CQ=4,DQ=4+x过A作AQBC,Q=FQC=90,ADQ=AFC,则AQDACFCFBD,AQDDCP,, ,【总结升华】此题综合性强,需要综合运用全等、相似、正方形等知识点,属能力拔高性的题目3(2015河南模拟)如图,正方形ABCD的边
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 冲刺 几何 综合 问题 知识 讲解 提高
链接地址:https://www.77wenku.com/p-122091.html