知识讲解_高考总复习:计数原理、排列组合(基础)
《知识讲解_高考总复习:计数原理、排列组合(基础)》由会员分享,可在线阅读,更多相关《知识讲解_高考总复习:计数原理、排列组合(基础)(18页珍藏版)》请在七七文库上搜索。
1、高考总复习:计数原理、排列组合编稿:孙永钊 审稿:张林娟【考纲要求】1理解分类加法计数原理和分步乘法计数原理;会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.2理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式;能解决简单的实际问题.【知识网络】排列数公式组合两个计数原理排列排列概念组合概念组合数公式组合数性质应用【考点梳理】要点一、分类加法计数原理与分步乘法计数原理1分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2方案中有n种不同的方法。那么完成这件事共有N=m+n种不同的方法。要点诠释:如果完成一件事有n类办法,这n类办法彼此
2、之间是相互独立的,无论哪一类办法中哪一种方法都能完成这件事,求完成这件事的方法种数,就用分类加法计数原理;在解题时,应首先分清楚怎样才算完成这件事,有些题目在解决时需要进行分类讨论,分类时要适当地确定分类的标准,按照分类的原则进行,做到不重不漏。2分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=mn种不同的方法。要点诠释:如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,计算完成这件事的方法种数就用分步乘法计数原理。解题时,关键是分清楚完成这件事是分类还分步
3、,在应用分步乘法计数原理时,各个步骤都完成,才算完成这件事,步骤之间互不影响,即前一步用什么方法,不影响后一步采取什么方法,运用分步乘法计数原理,要确定好次序,还要注意元素是否可以重复选取。3两个计数原理的综合应用(1)在解决实际问题的过程中,并不一定是单一的分类或分步,而是可能同应用计数原理,即分类时,每类的方法可能要运用分步完成的,而分步时,每步的方法数可能会采取分类的思想求。另外,具体问题是先分类后分步,还是先分步后分类,应视问题的特点而定。解题时经常是两个原理交叉在一起使用,分类的关键在于要做到“不重不漏”,分类的关键在于要正确设计分步的程序,即合理分类,准确分步。(2)对于复杂问题,
4、只用分类加法计数原理或分步乘法计数原理不能解决时,可以综合应用两个原理,可以先分类,在某一类中再分步,也可先分步,在某步中再分类。要点二、排列与组合基础知识1. 定义、公式排列与排列数组合与组合数定义1排列:从n个不同元素中取出m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。2排列数:从n个不同元素中取出m(mn)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数。1组合:从n个不同元素中取出m(mn)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合。2组合数:从n个不同元素中取出m(mn)个元素的所有不同组合的个数,叫做从n个
5、不同元素中取出m个元素的组合数。公式排列数公式组合数公式性质(1)(2)备注要点诠释:区分某一问题是排列问题还是组合问题,关键是看所选出的元素与顺序是否有关,若交换某两个元素的位置对结果产生影响,则是排列问题,否则是组合问题。2. 排列数、组合数计算(1)排列数公式:右边第一个因数为n,后面每个因数都比它前面那个因数少1,最后一个因数是n-m+1,共m个因数。公式主要用于含有字母的排列数的式子的变形与论证;(2)组合数公式有乘积形式与阶乘形式两种,与排列数公式的应用一样,前者多用于数字计算,后者多用于对含有字母的组合数的式子进行变形和论证。还应注意组合数公式的逆用,即由写出。要点诠释:在排列数
6、、组合数计算过程要注意阶乘的运算及组合数性质的运用,注意含有排列数或组合数的方程都是在某个正整数范围内求解。要点三、排列应用题求排列应用题的主要方法有:(1)直接法:把符合条件的排列数直接列式计算;(2)特殊元素(或位置)优先安排的方法,即先排特殊元素或特殊位置;(3)排列、组合混合问题先选后排的方法;(4)相邻问题捆绑处理的方法。即可以把相邻元素看作一个整体参与其他元素排列,同时注意捆绑元素的内部排列; (5)不相邻问题插空处理的方法。即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中;(6)分排问题直排处理的方法;(7)“小集团”排列问题中先集体后局部的处理方法;(8)
7、定序问题除法处理的方法。即可以先不考虑顺序限制,排列后再除以定序元素的全排列;(9)正难则反,等价转化的方法。要点四、组合应用题组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取。(2)“至少”或“最多”含有几个元素的题型:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解。用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理。要点五、排列、组合应用题1. 排列、组合问题几大解题方法:直接法. 排除法.捆绑法:在特定要求的条
8、件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.调序法:当某些元素次序一定时,可用此法.解题方法是:先将n个元素进行全排列有种,个元素的全排列有种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n个元素排成一列,其中m个元素次序一定,共
9、有种排列方法.平均法:若把kn个不同元素平均分成k组,每组n个,共有.隔板法:常用于解正整数解组数的问题.例如:的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为显然,故()是方程的一组解.反之,方程的任何一组解,对应着惟一的一种在12个球之间插入隔板的方式(如图 所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数.注意:若为非负数解的x个数,即用中等于,有,进而转化为求a的正整数解的个数为 .2.解排列组合的应用题要注意以下几点:(1)仔细审题,判断是排列问题还是组
10、合问题;要按元素的性质分类,按事件发生的过程进行分类;(2)深入分析,严密周详,注意分清是乘还是加,要防止重复和遗漏,辩证思维,多角度分析,全面考虑;(3)对限制条件较复杂的排列组合应用题,要周密分析,设计出合理的方案,把复杂问题分解成若干简单的基本问题后用两个计数原理来解决;(4)由于排列组合问题的答案一般数目较大,不易直接验证,因此在检查结果时,应着重检查所设计的解决方案是否完备,有无重复和遗漏,也可采用多种不同的方法求解,看看结果是否相同。在对排列组合问题分类时,分类标准应统一,否则易出现遗漏或重复。(5)排列组合综合题目,一般是符合要求的元素取出(组合)或进行分组,再对取出的元素或分好
11、的组进行排列。其中分组时,要注意“平均分组”与“不平均分组”的差异及分类的标准。【典型例题】类型一、分类计数原理【例1】某电脑用户计划使用不超过500元购买单价分别为60元、70元的电脑软件和电脑元件,根据需要,软件至少买3个,元件至少买2个,则不同的选购方法有( ) A.5 B.6 C.7 D.8【思路点拨】采用列举法分类讨论。【解析】买软件3个和元件买2个共需要320元,还剩180元可以自由支配。下面考虑这180元的使用:1类:只再买0个软件,剩下的180元可以不买元件或买1个元件或买2个元件,共3种方法;2类:只再买1个软件,剩下的120元可以不买元件或买1个元件,共2种方法;3类:只再
12、买2个软件,剩下的60元不可以买元件,共1种方法;4类:只再买3个软件,剩下的0元不可以买元件,共1种方法;故不同的方法共有2+1+1+3=7种。【总结升华】选择恰当的分类标准,作到不重不漏。本题也可以用线形规划的整数解的方法解决。举一反三:【变式1】在所有两位数中,个位数字大于十位数字的两位数共有多少个?【答案】按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个.则共有1+2+3+4+7+8=36(个).【变式2】在一块并排的10垄田地中,选择二垄分别种植A、B两种作物,每种种植一垄,为有利于作物生长,要求A、B
13、两种作物的间隔不少于6垄,不同的选法共有多少种。【答案】条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。 第一类:A在第一垄,B有3种选择; 第二类:A在第二垄,B有2种选择; 第三类:A在第三垄,B有一种选择; 同理A、B位置互换,共12种。类型二、分步计数原理【例2】某体育彩票规定:从01到36共36个号中抽出7个号为一注,每注2无。某人想先选定吉利号18,然后从01到17中选3个连续的号,从19到29中选2个连续的号,从30至36中选1个号组成一注。若这个人要把符合这种要求的号全买下,至少要花多少元钱?【思路点拨】本题中要
14、完成选彩票这件事,必须把1到17中的3个连续号,19到29中的2个连续号,30到36中的1个号都选出才算完成这件事,所以完成这件事可分三步,用分步乘法计数原理解决。【解析】第1步:从01到17中选3个连续号有15种选法;第2步:从19到29中选2个连续号有10种选法;第3步:从30到36中选1个号有7种选法。由分步乘法计数原理可知:满足要求的注数共有15107=1050注,故至少要花10502=2100元。【总结升华】解题时,关键是分清楚完成这件事是分类还分步,在应用分步计数原理时,各个步骤都完成,才算完成这件事,步骤之间互不影响,运用分步计数原理,要确定好次序,还要注意元素是否可以重复选取。
15、举一反三:【变式1】(1)四名运动员争夺三项冠军,不同的结果最多有多少种?(2)四名运动员参加三项比赛,每人限报一项,不同的报名方法有多少种?【解析】(1)完成这件事分三步:第一步确定第一项冠军的得主,可能是这四名运动员中的任一个,则有4种不同结果;第二步确定第二项冠军的得主,也可能是这四名运动员中的任一个,也有4种不同结果;第三步确定第三项冠军得主,也有4种不同结果.则共有444=64种不同结果.(2)完成这件事情分四步: 第一步让第一名运动员报一项比赛,他可以选择三项比赛中的任一种,则有3种不同的报名方法;第二步让第二名运动填报,也有3种不同方法;第三步,第四步分别让第3,第4名运动员报,
16、结果都一样.则共有3333=81种不同结果.【点评】弄清两个原理的区别与联系,是正确使用这两个原理的前提和条件.这两个原理都是指完成一件事而言的.其区别在于:(1)分类计数原理是“分类”,分步计数原理是“分步”;(2)分类计数原理中每类办法中的每一种方法都能独立完成一件事,分步计数原理中每步中每种方法都只能做这件事的一步,不能独立完成这件事.【变式2】从1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,可组成不同的二次函数共有_个,其中不同的偶函数共有_个.(用数字作答)【答案】18,6;一个二次函数对应着a、b、c(a0)的一组取值,a的取法有3种,b的取法有3
17、种,c的取法有2种,由分步计数原理,知共有二次函数332=18个.若二次函数为偶函数,则b=0同上共有32=6个.【变式3】从集合1,2,3,10中,选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,这样的子集共有多少个?【答案】32;和为11的数共有5组:1与10,2与9,3与8,4与7,5与6,子集中的元素不能取自同一组中的两数,即子集中的元素取自5个组中的一个数.而每个数的取法有2种,所以子集的个数为22222=25=32.类型三、排列数、组合数计算【例3】计算下列各式的值(1)(2)(3)【思路点拨】利用排列数和组合数的公式及意义求解,(2)中注意n的取值范围。【解析】
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 知识 讲解 高考 复习 计数 原理 排列组合 基础
链接地址:https://www.77wenku.com/p-122218.html