知识讲解_高考总复习:二项式定理(提高)
《知识讲解_高考总复习:二项式定理(提高)》由会员分享,可在线阅读,更多相关《知识讲解_高考总复习:二项式定理(提高)(14页珍藏版)》请在七七文库上搜索。
1、高考总复习:二项式定理编稿:孙永钊 审稿:张林娟【考纲要求】1能用计数原理证明二项式定理;2掌握二项展开式系数的性质及计算的问题;3会用二项式定理解决与二项展开式有关的简单问题.【知识网络】【考点梳理】要点一、二项式定理公式叫做二项式定理。其中叫做二项式系数。叫做二项展开式的通项,它表示第项。其中: 公式右边的多项式叫做的二项展开式;展开式中各项的系数叫做二项式系数;式中的第r+1项叫做二项展开式的通项,用表示;二项展开式的通项公式为.要点诠释:二项展开式的通项公式集中体现了二项展开式中的指数、项数、系数的变化,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)
2、及其系数以及数、式的整除等方面有着广泛的应用。使用时要注意:(1)通项公式表示的是第“r+1”项,而不是第“r”项;(2)通项公式中a和b的位置不能颠倒;(3)展开式中第r+1项的二项式系数与第r+1项的系数,在一般情况下是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心以防出差错;(4)在通项公式中共含有a,b,n,r,这5个元素,在有关二项式定理的问题中,常常会遇到:知道5个元素中的若干个(或它们之间的关系),求另外几个元素的问题。这类问题一般是利用通项公式,把问题归结为解方程(组)或不等式(组),这里要注意n为正整数,r为非负数,且rn。要点二、二项展开式的特性项
3、数:有n+1项;次数:每一项的次数都是n次,即二项展开式为齐次式;各项组成:从左到右,字母a降幂排列,从n到0;字母b升幂排列,从0到n;系数:依次为.要点三、二项式系数的性质对称性:二项展开式中,与首末两端“等距离”的两项的二项式系数相等单调性:二项式系数在前半部分逐渐增大,在后半部分逐渐减小,在中间取得最大值.其中,当n为偶数时,二项展开式中间一项的二项式系数最大;当n为奇数时,二项展开式中间两项的二项式系数,相等,且最大.二项式系数之和为,即其中,二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即要点诠释:1对于二项式定理的构成,展开式中含的项的系数可理解为从n个相同的
4、a+b中先取出r个b,有种不同取法,再从剩下的n-r个括号中取出n-r个a,有种方法,据分步计数原理,共有种不同方法数,该方法数就对应着展开式中含的项的系数。2二项展开式的各项均含有不同的组合数,若赋予a,b不同的取值,则二项式展开式演变成一个组合恒等式.因此,揭示二项式定理的恒等式为组合恒等式的“母函数”,它是解决组合多项式问题的原始依据。3. 二项式定理中,项的系数与二项式系数的区别是:它们是完全不同的两个概念。二项式系数的指,它只与各项的项数有关,而与的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与的值有关。【典型例题】类型一、求特定项和特定项的系数【例
5、1】已知二项式展开式中,末三项的系数依次成等差数列,求此展开式中所有的有理项。【思路点拨】本题要利用二项式展开式通项公式写出通项,要求有理项只需使整理后的x的幂指数为整数即可。【解析】二项展开式的通项公式为 由此得二项展开式中末三项的系数分别为, 依题意得 注意到这里,故得n=8 设第r+1项为有理项,则有x的幂指数为整数, r=0,4,8, T1,T5,T9为有理项, 又由通项公式得: , , 所求二项展开式中的有理项分别为,【总结升华】求解二项式展开式特定项步骤:写出展开式的通项公式合并同类项整理令x的指数为整数k根据0rn,rZ,求k 根据k值求出展开式的有理项。【例2】在的展开式中,求
6、:(1)第4项的二项式系数;(2)第4项的系数;(3)常数项。【思路点拨】利用展开式的通项公式求解。【解析】展开式的通项:(1),二项式系数为;(2)由(1)知第4项的系数为;(3)令, 得, 常数项为.【总结升华】解决二项式问题要注意区分两种系数:一种是某一项的系数,按通常的多项式系数去理解、认定;一种是某项的二项式系数,仅指这一项中所含的那个组合数。二者在特殊情况下方为同一数值。举一反三:【变式1】的展开式中的系数是()A.6B.12C.24D.48【答案】C;【解析】,在中,x的系数为C22=24.的展开式中的系数为24。【变式2】设展开式的第7项与倒数第7项的比为1:6,求展开式的第7
7、项。【解析】展开式的通项 ,类型二、二项式系数的性质【例3】已知在的展开式中,第6项为常数项。(1)求n;(2)求含x2的项的系数;(3)求展开式所有的有理项。【思路点拨】写出展开式的通项公式根据第6项为常数项求n由n值令x的指数为2,求r求出x2的项的系数令x的指数为整数k根据0rn,rZ,求k. 根据k值求出展开式的有理项。【解析】(1)通项公式为因为第6项为常数项,所以r=5时,有=0,即n=10.(2)令=2,得,所求的系数为。(3)根据通项公式,由题意令=k(kZ),则10-2r=3k,即rZ,k应为偶数。k可取2,0,-2,即r可取2,5,8。所以第3项,第6项与第9项为有理项,它
8、们分别为【总结升华】(1)求二项式系数最大项:如果n是偶数,则中间一项(第()项)的二项式系数最大;如果n是奇数,则中间两项(第项与第+1项)的二项式系数相等并最大。(2)求展开式系数最大项:如求的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为且第r+1项系数最大,应用解出r来,即得系数最大项。举一反三:【变式1】已知。(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项。【解析】(1)展开式的通项:,故展开式中二项式系数最大的项为:(2)设第项的系数最大,则 ,化简得,解得:, ,故所求展开式中系数最大的项为:【变式2】已知展开式中,末三项的二项式系数和等于22
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 知识 讲解 高考 复习 二项式 定理 提高
链接地址:https://www.77wenku.com/p-122223.html