2019-2020学年云南省玉溪一中高二(上)第二次月考数学试卷(理科)含详细解答
《2019-2020学年云南省玉溪一中高二(上)第二次月考数学试卷(理科)含详细解答》由会员分享,可在线阅读,更多相关《2019-2020学年云南省玉溪一中高二(上)第二次月考数学试卷(理科)含详细解答(23页珍藏版)》请在七七文库上搜索。
1、2019-2020学年云南省玉溪一中高二(上)第二次月考数学试卷(理科)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1(5分)已知集合Mx|4x2,Nx|x2x60,则MN()Ax|4x3Bx|4x2Cx|2x2Dx|2x32(5分)抛物线y8x2的准线方程是()AyBy2CxDy23(5分)庄子天下篇中有一句话:“一尺之棰,日取其半,万世不竭”如果经过n天,该木锤剩余的长度为an(尺),则an与n的关系为()AanBan1CanDan14(5分)已知平面向量,与垂直,则实数的值为()A1B1C2D25(5分)已知命题p:x0,ex
2、1或sinx1,则p为()Ax0,ex1且sinx1Bx0,ex1或sinx1Cx0,ex1或sinx1Dx0,ex1且sinx16(5分)”mn0”是”方程mx2+ny21表示焦点在y轴上的椭圆”的()A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件7(5分)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A20B24C28D328(5分)PM2.5是空气质量的一个重要指标,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35g/m3以下空气质量为一级,在35g/m375g/m3之间空气质量为二级,在75g/m3以上空气质量为超标如图
3、是某地11月1日到10日PM2.5日均值(单位:g/m3)的统计数据,则下列叙述不正确的是()A从5日到9日,PM2.5日均值逐渐降低B这10天的PM2.5日均值的中位数是45C这10天中PM2.5日均值的平均数是49.3D从这10天的日均PM2.5监测数据中随机抽出一天的数据,空气质量为一级的概率是9(5分)新定义运算,若f(x),当x(0,)时,f(x)的值域为()A(0,)B0,)C()D0,10(5分)已知双曲线C过点(3,)且渐近线为yx,则下列结论正确的个数为()C的实轴长为2C的离心率为曲线yex21经过C的一个焦点 直线x与C有两个公共点A1个B2个C3个D4个11(5分)已知
4、四棱锥PABCD的顶点都在球O的球面上,底面ABCD是边长为2的正方形,且PA面ABCD,若四棱锥的体积为,则该球的体积为()A64B8C24D612(5分)已知双曲线的两条渐近线分别为l1、l2,经过右焦点F垂直于l1的直线分别交l1、l2于A、B两点,若|OA|,|AB|,|OB|成等差数列,且与反向,则该双曲线的离心率为()ABCD+1二、填空题:本题共4个小题,每小题5分,共20分.13(5分)狄利克雷函数(Dirichlet)是数学分析中病态函数的典型例子,在高等数学中是一个研究导数存在性,连续性的重要函数,是完全建立在主观意义上的函数,值得我们细细研究已知狄利克雷函数D(x),则D
5、(D(x) 14(5分)设x,y满足,则x2y的最大值为 15(5分)设已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点若AB的中点为(2,2),则直线l的方程为 16(5分)ABC中,B60,AC4,AC边上的高为2,则ABC的内切圆半径为 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17(10分)设函数f(x)sinx,xR(1)已知0,2),函数f(x+)是偶函数,求的值;(2)设,求g(x)的单调递减区间18(12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数根据此数据作出了
6、频数与频率的统计表和频率分布直方图:分组频数频率10,15)100.2515,20)25n20,25)mp25,30)20.05合计M1(1)求出表中M、p、m、n的值;(2)补全频率分布直方图;若该校高一学生有360人,估计他们参加社区服务的次数在区间15,20)内的人数;(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间20,25)内的概率19(12分)已知等比数列an的前n项和为Sn,且S24a1,a2是a1+1与的等差中项(1)求an与Sn;(2)若数列bn满足bn,设数列bn的前n项和为Tn,求证:n20(12分)如图,三棱锥PAB
7、C中,PA平面ABC,PAAC2,BAC60,D是PA的中点,E是CD的中点,点F在PB上,(1)证明:平面PAB平面PBC;(2)证明:EF平面ABC;(3)求二面角BCDA的正弦值;21(12分)已知f(x)logax,g(x)2loga(2x+t2),(a0,a1,tR)(1)若f(1)g(2),求t的值;(2)当t4,x1,2,且F(x)g(x)f(x)有最小值2时,求a的值;(3)当0a1,x1,2时,有f(x)g(x)恒成立,求实数t的取值范围22(12分)在平面直角坐标系中,动点M分别与两个定点A(2,0),B(2,0)的连线的斜率之积为(1)求动点M的轨迹C的方程;(2)设过点
8、(1,0)的直线与轨迹C交于P,Q两点,判断直线x与以线段PQ为直径的圆的位置关系,并说明理由2019-2020学年云南省玉溪一中高二(上)第二次月考数学试卷(理科)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1(5分)已知集合Mx|4x2,Nx|x2x60,则MN()Ax|4x3Bx|4x2Cx|2x2Dx|2x3【分析】利用一元二次不等式的解法和交集的运算即可得出【解答】解:Mx|4x2,Nx|x2x60x|2x3,MNx|2x2故选:C【点评】本题考查了一元二次不等式的解法和交集的运算,属基础题2(5分)抛物
9、线y8x2的准线方程是()AyBy2CxDy2【分析】先把抛物线方程整理成标准方程,进而求得p,再根据抛物线性质得出准线方程【解答】解:整理抛物线方程得x2y,p抛物线方程开口向下,准线方程是y,故选:A【点评】本题主要考查抛物线的基本性质解决抛物线的题目时,一定要先判断焦点所在位置3(5分)庄子天下篇中有一句话:“一尺之棰,日取其半,万世不竭”如果经过n天,该木锤剩余的长度为an(尺),则an与n的关系为()AanBan1CanDan1【分析】根据木锤前几天的剩余量,得到数列an满足的关系,由此即可解决问题【解答】解:依题意,解:由题意可得:第一次剩下尺,第二次剩下尺,第三次剩下尺,则第n天
10、后“一尺之棰”剩余的长度为:尺,故选:A【点评】本题考查有理数的乘方,解题的关键是理解题意,灵活运用所学知识解决问题本题属于基础题4(5分)已知平面向量,与垂直,则实数的值为()A1B1C2D2【分析】先求出()的坐标,由题意可得 ()+4+9+60,解方程求得 的值【解答】解:()(+4,32),由题意可得 ()(+4,32)(1,3)+4+9+60,1,故选A【点评】本题考查两个向量的加减法的法则,两个向量坐标形式的运算,两个向量垂直的性质,得到 +4+9+60,是解题的难点5(5分)已知命题p:x0,ex1或sinx1,则p为()Ax0,ex1且sinx1Bx0,ex1或sinx1Cx0
11、,ex1或sinx1Dx0,ex1且sinx1【分析】根据含有量词的命题的否定即可得到结论【解答】解:命题为全称命题,则命题p:x0,ex1或sinx1,则p为:x0,ex1且sinx1,故选:D【点评】本题主要考查含有量词的命题的否定,比较基础6(5分)”mn0”是”方程mx2+ny21表示焦点在y轴上的椭圆”的()A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件【分析】将方程mx2+ny21转化为,然后根据椭圆的定义判断【解答】解:将方程mx2+ny21转化为,根据椭圆的定义,要使焦点在y轴上必须满足,且,即mn0反之,当mn0,可得出0,此时方程对应的轨迹是椭圆综上证
12、之,”mn0”是”方程mx2+ny21表示焦点在y轴上的椭圆”的充要条件故选:C【点评】本题考查椭圆的定义,难度不大,解题认真推导7(5分)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A20B24C28D32【分析】空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,做出圆柱的表面积,注意不包括重合的平面【解答】解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长是4,圆锥的侧面积是24
13、8,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,圆柱表现出来的表面积是22+22420空间组合体的表面积是28,故选:C【点评】本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样的弊端8(5分)PM2.5是空气质量的一个重要指标,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35g/m3以下空气质量为一级,在35g/m375g/m3之间空气质量为二级,在75g/m3以上空气质量为超标如图是某地11月1日到10日PM2.5日均值(单位:g/m3)的统计数据,则下列叙述不正确的是()A从5日到9日,PM2.5日均值
14、逐渐降低B这10天的PM2.5日均值的中位数是45C这10天中PM2.5日均值的平均数是49.3D从这10天的日均PM2.5监测数据中随机抽出一天的数据,空气质量为一级的概率是【分析】先对图表信息进行分析,再由频率分布折线图逐一检验即可得解【解答】解:由图表可知,选项A,C,D正确,对于选项B,这10天的PM2.5日均值的中位数是47,故B错误,故选:B【点评】本题考查了频率分布折线图,考查数据处理和分析能力,属中档题9(5分)新定义运算,若f(x),当x(0,)时,f(x)的值域为()A(0,)B0,)C()D0,【分析】根据定义先求出函数f(x)的解析式,结合一元二次函数的最值性质进行求解
15、即可【解答】解:由题意得f(x),即f(x),x(0,),f(x)的最大值为f(),最小值为f(3)0,函数f(x)的值域为0,故选:D【点评】本题主要考查函数值域的求解,结合新定义求出函数的解析式以及利用一元二次函数的性质是解决本题的关键10(5分)已知双曲线C过点(3,)且渐近线为yx,则下列结论正确的个数为()C的实轴长为2C的离心率为曲线yex21经过C的一个焦点 直线x与C有两个公共点A1个B2个C3个D4个【分析】计算题;圆锥曲线的定义、性质与方程,直线与圆锥曲线相交【解答】解:渐近线为,可令双曲线方程为,0,且双曲线经过点,代入双曲线方程,得,1,实轴长为,正确,离心率,正确,焦
16、点坐标(2,0),(2,0),将点(2,0)代入函数yex21,符合,可知该曲线经过焦点(2,0),正确,将直线与双曲线方程联立后,解得,可知该直线与双曲线相切,错误,综上所述,本题正确,错误,故选:C【点评】本题考查双曲线和方程和性质,考查“共渐近线”的双曲线方程求解,考查直线与圆锥曲线交点个数的判断,考查计算能力,属于基础题11(5分)已知四棱锥PABCD的顶点都在球O的球面上,底面ABCD是边长为2的正方形,且PA面ABCD,若四棱锥的体积为,则该球的体积为()A64B8C24D6【分析】把四棱锥PABCD扩展为长方体,则长方体的对角线的长是外接球的直径,求出外接球的半径R,再计算外接球
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 学年 云南省 玉溪 中高 第二次 月考 数学试卷 理科 详细 解答
链接地址:https://www.77wenku.com/p-122539.html