2019-2020学年四川省成都市高二(上)期末数学试卷(文科)含详细解答
《2019-2020学年四川省成都市高二(上)期末数学试卷(文科)含详细解答》由会员分享,可在线阅读,更多相关《2019-2020学年四川省成都市高二(上)期末数学试卷(文科)含详细解答(21页珍藏版)》请在七七文库上搜索。
1、2019-2020学年四川省成都市高二(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1(5分)某同学在7天内每天阅读课外书籍的时间(单位:分钟)用茎叶图表示如图所示,图中左列表示时间的十位数,右列表示时间的个位数则该同学这7天每天阅读课外书籍的时间(单位:分钟)的中位数为()A72B74C75D762(5分)命题“xR,x2+x+20”的否定是()ABCDxR,x2+x+203(5分)双曲线x21的渐近线方程为()ABCy3xDy9x4(5分)在空间直角坐标系Oxyz中,点M(0,m,0)到点P(1,0,2)和点Q
2、(1,3,1)的距离相等,则实数m的值为()A2B1C1D25(5分)圆(x+3)2+(y+4)216与圆x2+y24的位置关系为()A相离B内切C外切D相交6(5分)如图是统计某样本数据得到的频率分布直方图已知该样本容量为300,根据此样本的频率分布直方图,估计样本数据落在10,18)内的频数为()A36B48C120D1447(5分)若m为实数,则“1m2”是“曲线C:表示双曲线”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件8(5分)某人午睡醒来,发现表停了,他打开收音机,想听电台整点报时,他等待的时间不多于15分钟的概率是()ABCD9(5分)某校学生会为了解高
3、二年级600名学生课余时间参加中华传统文化活动的情况(每名学生最多参加7场)随机抽取50名学生进行调查,将数据分组整理后,列表如下:参加场数01234567占调查人数的百分比8%10%20%26%18%m%4%2%则以下四个结论中正确的是()A表中m的数值为10B估计该年级参加中华传统文化活动场数不高于2场的学生约为108人C估计该年级参加中华传统文化活动场数不低于4场的学生约为216人D若采用系统抽样方法进行调查,从该校高二600名学生中抽取容量为30的样本,则分段间隔为1510(5分)设点A(4,5),抛物线x28y的焦点为F,P为抛物线上与直线AF不共线的一点,则PAF周长的最小值为()
4、A18B13C12D711(5分)某中学在每年的春节后都会组织高一学生参加植树活动为保证树苗的质量,在植树前都会对树苗进行检测现从某种树苗中随机抽测了10株树苗,测量出的高度xi(i1,2,3,10)(单位:厘米)分别为37,21,31,20,29,19,32,23,25,33计算出抽测的这10株树苗高度的平均值27,将这10株树苗的高度xi依次输入程序框图进行运算,则输出的S的值为()A25B27C35D3712(5分)在平面直角坐标系xOy中,动点A在半圆M:(x2)2+y24(2x4)上,直线OA与抛物线y216x相交于异于O点的点B则满足|OA|OB|16的点B的个数为()A无数个B4
5、个C2个D0个二、填空题:本大题共4小题,每小题5分,共20分把答案填在答题卡上13(5分)一支田径队共有运动员112人,其中有男运动员64人,女运动员48人采用分层抽样的方法从这支田径队中抽出一个容量为28的样本,则抽出的样本中女运动员的人数为 14(5分)同时投掷两枚质地均匀的骰子,则这两枚骰子向上点数之和为5的概率是 15(5分)某射击运动员在一次训练中连续射击了两次设命题p:第一次射击击中目标,命题q:第二次射击击中目标,命题r:两次都没有击中目标用p,q及逻辑联结词“或”,“且”,“非”(或,)表示命题r为 16(5分)设椭圆C:(ab0)的左,右焦点分别为F1,F2,经过点F1的直
6、线与椭圆C相交于M,N两点若|MF2|F1F2|,且7|MF1|4|MN|,则椭圆C的离心率为 三、解答题:本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤17(10分)一个不透明的箱子中装有大小形状相同的5个小球,其中2个白球标号分别为A1,A2,3个红球标号分别为B1,B2,B3,现从箱子中随机地一次取出两个球()求取出的两个球都是白球的概率;()求取出的两个球至少有一个是白球的概率18(12分)已知动点P到点M(3,0)的距离是点P到坐标原点O的距离的2倍,记动点P的轨迹为曲线C()求曲线C的方程;()若直线xy+10与曲线C相交于A,B两点,求|AB|的值19(12分)已
7、知椭圆C:(ab0)的左,右焦点分别为F1,F2,经过点F1的直线(不与x轴重合)与椭圆C相交于A,B两点,ABF2的周长为8()求椭圆C的方程;()经过椭圆C上的一点Q作斜率为k1,k2(k10,k20)的两条直线分别与椭圆C相交于异于Q点的M,N两点若M,N关于坐标原点对称,求k1k2的值20(12分)某学校高一数学兴趣小组对学生每周平均体育锻炼小时数与体育成绩优秀(体育成绩满分100分,不低于85分称优秀)人数之间的关系进行分析研究,他们从本校初二,初三,高一,高二,高三年级各随机抽取了40名学生,记录并整理了这些学生周平均体育锻炼小时数与体育成绩优秀人数,得到如下数据表:初二初三高一高
8、二高三周平均体育锻炼小时数工(单位:小时)141113129体育成绩优秀人数y(单位:人)3526322619该兴趣小组确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,再用剩下的2组数据进行检验()若选取的是初三,高一,高二的3组数据,请根据这3组数据,求出y关于x的线性回归方程;()若由线性回归方程得到的估计数据与所选取的检验数据的误差均不超过1,则认为得到的线性回归方程是可靠的,试问()中所得到的线性回归方程是否可靠?参考数据:,参考公式:,21(12分)己知动点M与到点N(3,0)的距离比动点M到直线x2的距离大1,记动点M的轨迹为曲线C()求曲线C的方程;()若直线l与曲
9、线C相交于A,B两点,且(O为坐标原点),证明直线l经过定点H,并求出H点的坐标22(12分)在平面直角坐标系中,以坐标原点为中心,以坐标轴为对称轴的椭圆C经过点M(2,1),N(,)()求椭圆C的标准方程;()经过点M作倾斜角互补的两条直线,分别与椭圆C相交于异于M点的A,B两点,求直线AB的斜率2019-2020学年四川省成都市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1(5分)某同学在7天内每天阅读课外书籍的时间(单位:分钟)用茎叶图表示如图所示,图中左列表示时间的十位数,右列表示时
10、间的个位数则该同学这7天每天阅读课外书籍的时间(单位:分钟)的中位数为()A72B74C75D76【分析】根据茎叶图中的数据,把其排序后即可得到结论【解答】解:由茎叶图中的数据可知,所有数据为:60,61,62,74,76,80,80,所以其中位数为:74故选:B【点评】本题主要考查茎叶图的应用,知道中位数的定义是解决本题的关键,比较基础2(5分)命题“xR,x2+x+20”的否定是()ABCDxR,x2+x+20【分析】根据含有量词的命题的否定即可得到结论【解答】解:命题为全称命题,则命题“xR,x2+x+20”的否定是:故选:A【点评】本题主要考查含有量词的命题的否定,比较基础3(5分)双
11、曲线x21的渐近线方程为()ABCy3xDy9x【分析】由双曲线方程求得a,b的值,则渐近线方程可求【解答】解:由双曲线x21,得a21,b29,a1,b3,则双曲线x21的渐近线方程为y3x故选:C【点评】本题考查双曲线的简单性质,是基础题4(5分)在空间直角坐标系Oxyz中,点M(0,m,0)到点P(1,0,2)和点Q(1,3,1)的距离相等,则实数m的值为()A2B1C1D2【分析】利用两点间距离公式直接求解【解答】解:在空间直角坐标系Oxyz中,点M(0,m,0)到点P(1,0,2)和点Q(1,3,1)的距离相等,解得m1实数m的值为1故选:B【点评】本题考查实数值的求法,考查两点间距
12、离公式等基础知识,考查运算求解能力,是基础题5(5分)圆(x+3)2+(y+4)216与圆x2+y24的位置关系为()A相离B内切C外切D相交【分析】根据题意,分析两个圆的圆心以及半径,由圆与圆的位置关系分析可得答案【解答】解:根据题意,圆(x+3)2+(y+4)216的圆心为(3,4),半径r14,圆x2+y24的圆心为(0,0),半径r22,两圆的圆心距d5,有r1r22dr1+r26,两圆相交;故选:D【点评】本题考查圆与圆的位置关系,涉及圆的标准方程,属于基础题6(5分)如图是统计某样本数据得到的频率分布直方图已知该样本容量为300,根据此样本的频率分布直方图,估计样本数据落在10,1
13、8)内的频数为()A36B48C120D144【分析】求出在10,18)内的频率,再求出频数即可【解答】解:样本数据落在10,18)内的频率为4(0.09+0.03)0.48,3000.48144,故选:D【点评】考查频率分布直方图的应该,基础题7(5分)若m为实数,则“1m2”是“曲线C:表示双曲线”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【分析】曲线C:表示双曲线,则m(m2)0,解得m即可得出关系【解答】解:曲线C:表示双曲线,则m(m2)0,解得0m2“1m2”是“曲线C:表示双曲线”的充分不必要条件故选:A【点评】本题考查了双曲线的标准方程及其性质、不等
14、式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题8(5分)某人午睡醒来,发现表停了,他打开收音机,想听电台整点报时,他等待的时间不多于15分钟的概率是()ABCD【分析】由电台整点报时的时刻是任意的知这是一个几何概型,电台整点报时知事件总数包含的时间长度是60,而他等待的时间不多于15分钟的事件包含的时间长度是15,利用时间的长度比即可求出所求【解答】解:由题意知这是一个几何概型,电台整点报时,事件总数包含的时间长度是60,满足他等待的时间不多于15分钟的事件包含的时间长度是15,由几何概型公式得到P;故选:C【点评】本题主要考查了几何概型,本题先要判断该概率模型,对于几何概
15、型,它的结果要通过长度、面积或体积之比来得到,属于中档题9(5分)某校学生会为了解高二年级600名学生课余时间参加中华传统文化活动的情况(每名学生最多参加7场)随机抽取50名学生进行调查,将数据分组整理后,列表如下:参加场数01234567占调查人数的百分比8%10%20%26%18%m%4%2%则以下四个结论中正确的是()A表中m的数值为10B估计该年级参加中华传统文化活动场数不高于2场的学生约为108人C估计该年级参加中华传统文化活动场数不低于4场的学生约为216人D若采用系统抽样方法进行调查,从该校高二600名学生中抽取容量为30的样本,则分段间隔为15【分析】根据系统抽样的定义分别进行
16、判断即可得答案【解答】解:8%+10%+20%+26%+18%+m%+4%+2%1,得m12,故A错误, 活动次数不高于2场的学生约(8%+10%+20%)600228,即约为228人,故B错误, 参加传统文化活动次数不低于4场的学生为(18%+12%+4%+2%)600216人,故C正确; D中的分段间隔应为6003020,故D错误故选:C【点评】本题主要考查命题的真假判断,结合系统抽样的定义进行判断是解决本题的关键,是基础题10(5分)设点A(4,5),抛物线x28y的焦点为F,P为抛物线上与直线AF不共线的一点,则PAF周长的最小值为()A18B13C12D7【分析】利用抛物线的定义进行
17、转化,把 PF转化为P到准线的距离即可求解【解答】解:如图所示,过P作准线的垂线,垂足为B,由题意可得:A(0,2),PFPB,PAF周长:PF+AF+APPB+AF+AP,周长最小即PB+AP最小,当A、P、B三点在一条直线上时取得最小值,周长最小为:为B,12,故选:C【点评】熟练掌握抛物线的定义是解题的关键,对于周长求最值的问题常常需要转化11(5分)某中学在每年的春节后都会组织高一学生参加植树活动为保证树苗的质量,在植树前都会对树苗进行检测现从某种树苗中随机抽测了10株树苗,测量出的高度xi(i1,2,3,10)(单位:厘米)分别为37,21,31,20,29,19,32,23,25,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 学年 四川省 成都市 期末 数学试卷 文科 详细 解答
链接地址:https://www.77wenku.com/p-122632.html