2018-2019学年四川省广安四中八年级(下)期中数学试卷(含详细解答)
《2018-2019学年四川省广安四中八年级(下)期中数学试卷(含详细解答)》由会员分享,可在线阅读,更多相关《2018-2019学年四川省广安四中八年级(下)期中数学试卷(含详细解答)(32页珍藏版)》请在七七文库上搜索。
1、2018-2019学年四川省广安四中八年级(下)期中数学试卷一、选择题(本大题共10小题)1下列二次根式中,是最简二次根式的是()ABCD2下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A3,4,5B6,8,10C,2,D1,1,3下列给出的条件中,不能判定四边形ABCD是平行四边形的是()AABCD,ACBABCD,BDCADBC,ADBCDABCD,ADBC4下列命题中,不正确的是()A平行四边形的对角线互相平分B矩形的对角线互相垂直且平分C菱形的对角线互相垂直且平分D正方形的对角线相等且互相垂直平分5如图,在ABCD中,已知AD8cm,AB6cm,DE平分AD
2、C交BC边于点E,则BE等于()A2cmB4cmC6cmD8cm6如图,是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A甲正确,乙错误B甲错误,乙正确C甲、乙均正确D甲、乙均错误7如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开若测得AM的长为1.2km,则M,C两点间的距离为()A0.5kmB0.6kmC0.9kmD1.2km8如图所示,数轴上点A所表示的数为a,则a的值是()A1B+1C+1D9将长方形纸片ABCD按如图所示的方式折叠,恰好得到平行四边形AECF且D、B重合于AC上,若AD,则平行四
3、边形AECF的面积为()A2B4C4D810如图所示,正方形ABCD的面积为12,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A2B2C3D二、填空题(本大题共10小题,)11根据下列条件,求字母x的取值范围:1x: 12如图,正方形网格的边长为1,点A,B,C在网格的格点上,点P为BC的中点,则AP 13如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF3,则菱形ABCD的周长是 14如图,矩形ABCD中,AB8,AD10,点E为DC边上的一点,将ADE沿直线AE折叠,点D刚好落在BC边上的点F处,则CE的长是 15如图
4、,活动衣帽架由三个菱形组成,利用四边形的不稳定性,调整菱形的内角,使衣帽架拉伸或收缩当菱形的边长为18cm,120时,A、B两点的距离为 cm16若正方形的面积为16cm2,则正方形对角线长为 cm17如图,矩形ABCD中,对角线AC、BD交于点O,AOB60,若AB1,则BC 18阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线已知:直线l及其外一点A求作:l的平行线,使它经过点A小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,AB长为半径作弧,交直线l于点C;(2)分别以A,C为圆心,以AB长为半径作弧,两弧相交于点D;(3)作直线AD所以直线
5、AD即为所求老师说:“小云的作法正确”请回答:小云的作图依据是 19如图,O是矩形ABCD的对角线AC的中点,M是AD的中点若AB5,AD12,则四边形ABOM的周长为 20如图在一棵树的10m高的D处有两只猴子,其中一只猴子爬下树走到离树20m处的池塘A处,另一只爬到树顶后直接跃向池塘A处如果两只猴子所经过的距离相等,试问这棵树高 m三、计算题21化简(1)+(2)(a,b均为正)(3)(2)四、解答题22已知:如图,四边形ABCD是平行四边形,AECF,且分别交对角线BD于点E,F(1)求证:AEBCFD;(2)连接AF,CE,若AFECFE,求证:四边形AFCE是菱形23如图,在ABCD
6、中,AE平分BAD,交BC于点E,BF平分ABC,交AD于点F,AE与BF交于点O,连接EF求证:四边形ABEF是菱形24在ABCD中,过点D作DEAB于点E,点F 在边CD上,DFBE,连接AF,BF(1)求证:四边形BFDE是矩形;(2)若CF3,BF4,DF5,求证:AF平分DAB25如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、;(3)如果把图3中的阴影部分图形剪开,拼接成一个新正方形,那么这个新正方形的边长是 ,请你在图4中画出这个正方形26如图,
7、四边形OABC与四边形ODEF都是正方形(1)当正方形ODEF绕点O在平面内旋转时,AD与CF有怎样的数量和位置关系?并证明你的结论;(2)若OA,正方形ODEF绕点O旋转,当点D转到直线OA上时,DCO恰好是30,试问:当点D转到直线OA或直线OC上时,求AD的长(本小题只写出结论,不必写出过程)27已知:在矩形ABCD和BEF中,DBCEBF30,BEF90(1)如图1,当点E在对角线BD上,点F在BC边上时,连接DF,取DF的中点M,连接ME,MC,则ME与MC的数量关系是 ,EMC ;(2)如图2,将图1中的BEF绕点B旋转,使点E在CB的延长线上,(1)中的其他条件不变(1)中ME与
8、MC的数量关系仍然成立吗?请证明你的结论;求EMC的度数2018-2019学年四川省广安四中八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题)1下列二次根式中,是最简二次根式的是()ABCD【分析】A选项中含有小数;D选项的被开方数中含有能开得尽方的因数;C选项的被开方数中含有分母;因此这三个选项都不符合最简二次根式的要求所以本题的答案应该是B【解答】解:A、,不是最简二次根式;B、,不含有未开尽方的因数或因式,是最简二次根式;C、,被开方数中含有分母,故不是最简二次根式;D、2,不是最简二次根式只有选项B中的是最简二次根式,故选B【点评】在判断最简二次根式的过程中要注意
9、:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式2下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A3,4,5B6,8,10C,2,D1,1,【分析】利用勾股定理的逆定理,只要验证每组数中的两个较小的数的平方和等于最大的边的平方,即可构成直角三角形;否则,则不能构成【解答】解:A,32+422552,故能构成直角三角形;B、62+82100102,故能构成直角三角形;C、()2+227,()25,因而()2+22()2,则不能构成直角三角形;D、12
10、+122()2,故能构成直角三角形;故选:C【点评】本题考查勾股定理的逆定理的应用判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可3下列给出的条件中,不能判定四边形ABCD是平行四边形的是()AABCD,ACBABCD,BDCADBC,ADBCDABCD,ADBC【分析】根据平行四边形的判定即可判断B、C;根据平行线的性质和已知求出BD,判断A;根据平行四边形的判定判断D即可【解答】解:A、ABCD,A+D180,B+C180,AC,BD,四边形ABCD是平行四边形,故本选项不符合题意;B、ABCD,BD,即四边形ABCD的一组对边相等,一组对角相等,所以不
11、能判定该四边形是平行四边形故本选项符合题意;C、ADBC,ADBC,即四边形ABCD的一组对边平行且相等,则该四边形是平行四边形,故本选项不符合题意;D、ABCD,ADBC,即四边形ABCD的两组对边分别相等,则该四边形是平行四边形,故本选项不符合题意;故选:B【点评】本题考查了对平行线的性质和判定,平行四边形的判定等知识点的应用,关键是推出证明是四边形是平行四边形的条件,题型较好,是一道容易出错的题目4下列命题中,不正确的是()A平行四边形的对角线互相平分B矩形的对角线互相垂直且平分C菱形的对角线互相垂直且平分D正方形的对角线相等且互相垂直平分【分析】根据特殊四边形的性质 一一判断即可【解答
12、】解:A、正确平行四边形的对角线互相平分B、错误应该是矩形的对角线相等且互相平分C、正确菱形的对角线互相垂直且平分D、正确正方形的对角线相等且互相垂直平分故选:B【点评】本题考查命题与定理、特殊四边形的性质等知识,解题的关键是熟练掌握特殊四边形的性质,属于中考常考题型5如图,在ABCD中,已知AD8cm,AB6cm,DE平分ADC交BC边于点E,则BE等于()A2cmB4cmC6cmD8cm【分析】由平行四边形对边平行根据两直线平行,内错角相等可得EDADEC,而DE平分ADC,进一步推出EDCDEC,在同一三角形中,根据等角对等边得CECD,则BE可求解【解答】解:根据平行四边形的性质得AD
13、BC,EDADEC,又DE平分ADC,EDCADE,EDCDEC,CDCEAB6,即BEBCEC862故选:A【点评】本题直接通过平行四边形性质的应用,及等腰三角形的判定,属于基础题6如图,是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A甲正确,乙错误B甲错误,乙正确C甲、乙均正确D甲、乙均错误【分析】首先证明AOECOF(ASA),可得AECF,再根据一组对边平行且相等的四边形是平行四边形可判定判定四边形AECF是平行四边形,再由ACEF,可根据对角线互相垂直的四边形是菱形判定出AECF是菱形;四边形ABCD是平
14、行四边形,可根据角平分线的定义和平行线的定义,求得ABAF,所以四边形ABEF是菱形【解答】解:甲的作法正确;四边形ABCD是平行四边形,ADBC,DACACB,EF是AC的垂直平分线,AOCO,在AOE和COF中,AOECOF(ASA),AECF,又AECF,四边形AECF是平行四边形,EFAC,四边形AECF是菱形;乙的作法正确;ADBC,12,67,BF平分ABC,AE平分BAD,23,56,13,57,ABAF,ABBE,AFBEAFBE,且AFBE,四边形ABEF是平行四边形,ABAF,平行四边形ABEF是菱形;故选:C【点评】此题主要考查了菱形形的判定,关键是掌握菱形的判定方法:菱
15、形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等菱形);四条边都相等的四边形是菱形对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”)7如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开若测得AM的长为1.2km,则M,C两点间的距离为()A0.5kmB0.6kmC0.9kmD1.2km【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MCAM1.2km【解答】解:在RtABC中,ACB90,M为AB的中点,MCABAM1.2km故选:D【点评】本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半理解题意,将实际
16、问题转化为数学问题是解题的关键8如图所示,数轴上点A所表示的数为a,则a的值是()A1B+1C+1D【分析】首先计算出直角三角形斜边的长,然后再确定a的值【解答】解:,a1,故选:A【点评】此题主要考查了实数与数轴,关键是利用勾股定理计算出直角三角形斜边长9将长方形纸片ABCD按如图所示的方式折叠,恰好得到平行四边形AECF且D、B重合于AC上,若AD,则平行四边形AECF的面积为()A2B4C4D8【分析】根据折叠的对称性可知O为AC中点,FE是AC的垂直平分线,从而说明平行四边形AECF是菱形,所以DAFFACBAC30,可求FO长,求出AFO面积乘以4即是菱形AECF面积【解答】解:根据
17、折叠的对称性可知AOAD,COCB,FOACOE90,O点为AC中点FAFC又四边形AECF是平行四边形,四边形AECF是菱形AC平分FAE,即FACBACDAFFACBAC30在RtFAO中,AO,FAO30,所以AF2,FO1所以FAO面积1平行四边形AECF的面积为42故选:A【点评】本题借助特殊四边形考查了翻折变换的对称性,解决这类问题要知道折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等10如图所示,正方形ABCD的面积为12,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A2B
18、2C3D【分析】由于点B与D关于AC对称,所以连接BD,与AC的交点即为P点此时PD+PEBE最小,而BE是等边ABE的边,BEAB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果【解答】解:设BE与AC交于点F(P),连接BD,点B与D关于AC对称,PDPB,PD+PEPB+PEBE最小即P在AC与BE的交点上时,PD+PE最小,为BE的长度;正方形ABCD的面积为12,AB2又ABE是等边三角形,BEAB2故所求最小值为2故选:A【点评】此题主要考查轴对称最短路线问题,要灵活运用对称性解决此类问题二、填空题(本大题共10小题,)11根据下列条件,求字母x的取值范围:1x:x1【
19、分析】依据二次根式的非负性,即可得到x的取值范围【解答】解:1x0,x1,故答案为:x1【点评】本题主要考查了二次根式的性质与化简,利用二次根式的非负性是解决问题的关键12如图,正方形网格的边长为1,点A,B,C在网格的格点上,点P为BC的中点,则AP【分析】首先根据网格计算出AC212+3210,AB222+6240,CB212+7250,进而可得CAB90,然后再根据直角三角形斜边上的中线等于斜边的一半可得答案【解答】解:AC212+3210,AB222+6240,CB212+7250,10+4050,AC2+AB2CB2,CAB90,点P为BC的中点,APBC故答案为:【点评】此题主要考
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 2019 学年 四川省 广安 四中八 年级 期中 数学试卷 详细 解答
链接地址:https://www.77wenku.com/p-122681.html