2019-2020学年四川省乐山市十校高二(上)期中数学试卷(理科)含详细解答
《2019-2020学年四川省乐山市十校高二(上)期中数学试卷(理科)含详细解答》由会员分享,可在线阅读,更多相关《2019-2020学年四川省乐山市十校高二(上)期中数学试卷(理科)含详细解答(23页珍藏版)》请在七七文库上搜索。
1、2019-2020学年四川省乐山市十校高二(上)期中数学试卷(理科)一、选择题(本题共12道小题,每小题5分,共60分)1(5分)如图是由哪个平面图形旋转得到的()ABCD2(5分)若直线ax+by1与圆x2+y21有两个公共点,则点P(a,b)与圆x2+y21的位置关系是()A在圆上B在圆外C在圆内D以上都有可能3(5分)圆心在y轴上,半径为1,且过点(1,2)的圆的方程为()Ax2+(y2)21Bx2+(y+2)21C(x1)2+(y3)21Dx2+(y3)214(5分)设l是直线,是两个不同的平面()A若l,l,则 B若l,l,则C若,l,则 lD若,l,则l5(5分)已知正方体ABCD
2、A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为()ABCD6(5分)点P(4,2)与圆x2+y24上任一点连线的中点轨迹方程是()A(x2)2+(y+1)21B(x2)2+(y+1)24C(x+4)2+(y2)21D(x+2)2+(y1)217(5分)下列四个命题:(1)存在与两条异面直线都平行的平面;(2)过空间一点,一定能作一个平面与两条异面直线都平行;(3)过平面外一点可作无数条直线与该平面平行;(4)过直线外一点可作无数个平面与该直线平行其中正确的命题的个数是()A1B2C3D48(5分)直线x+y+40分别与x轴,y轴交于A,B两点,点P在
3、圆(x2)2+y22上,则ABP面积的取值范围是()A2,6B8,16C,3D2,39(5分)圆台上、下底面面积分别是、4,侧面积是6,这个圆台的体积是()AB2CD10(5分)过点(1,2)作圆(x1)2+y21的两条切线,切点分别为A,B,则AB所在直线的方程为()AyByCyDy11(5分)方程k(x2)+3有两个不等实根,则k的取值范围是()A(0,)B(,C(,+)D12(5分)如图,点E为正方形ABCD边CD上异于点C,D的动点,将ADE沿AE翻折成SAE,使得平面SAE平面ABCE,则下列说法中正确的有()存在点E使得直线SA平面SBC;平面SBC内存在直线与SA平行平面ABCE
4、内存在直线与平面SAE平行;存在点E使得SEBAA1个B2个C3个D4个二、填空题(本题共4道小题,每小题5分,共20分)13(5分)已知P(x,y)为圆(x2)2+y21上的动点,则3x+4y4的最大值为 14(5分)在三棱锥PABC中,PB6,AC3,G为PAC的重心,过点G作三棱锥的一个截面,使截面平行于直线PB和AC,则截面的周长为 15(5分)圆x2+y240与圆x2+y24x+4y120的公共弦的长为 16(5分)若四面体ABCD的三组对棱分别相等,即ABCD,ACBD,ADBC,给出下列结论:四面体ABCD每组对棱相互垂直;四面体ABCD每个面的面积相等;从四面体ABCD每个顶点
5、出发的三条棱两两夹角之和大于90而小于180;连接四面体ABCD每组对棱中点的线段相互垂直平分其中正确结论的序号是 (写出所有正确结论的序号)三、解答题(本题共6道小题,共70分)17(10分)已知一个几何体的三视图如图所示(1)求此几何体的表面积;(2)如果点P,Q在正视图中所示位置,P为所在线段中点,Q为顶点,求在几何体侧面的表面上,从P点到Q点的最短路径的长18(12分)已知圆C:x2+y22x4y200及直线l:(2m+1)x+(m+1)y7m+4(mR)(1)证明:不论m取什么实数,直线l与圆C总相交;(2)求直线l被圆C截得的弦长的最小值及此时的直线方程19(12分)如图,AB是圆
6、O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且POOB6D为线段AC的中点,()求证:平面PAC平面PDO;()若点E在线段PB上,且PE2EB,求三棱锥EPOC体积的最大值20(12分)已知圆C的圆心在直线x3y0上,且与y轴相切于点(0,1)()求圆C的方程;()若圆C与直线l:xy+m0交于A,B两点,分别连接圆心C与A,B两点,若CACB,求m的值21(12分)如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCD,ABBCAD,BADABC90,E是PD的中点(1)证明:直线CE平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45,
7、求二面角MABD的平面角的余弦值22(12分)在平面直角坐标系xOy中,ABC顶点的坐标为A(1,2),B(1,4),C(3,2)(1)求ABC外接圆E的方程;(2)若直线l经过点(0,4),且与圆E相交所得的弦长为,求直线l的方程;(3)在圆E上是否存在点P,满足PB22PA212,若存在,求出点P的坐标;若不存在,请说明理由2019-2020学年四川省乐山市十校高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本题共12道小题,每小题5分,共60分)1(5分)如图是由哪个平面图形旋转得到的()ABCD【分析】利用所给的几何体是由上部的圆锥和下部的圆台组合而成的,从而得到轴截面的图
8、形【解答】解:图中所给的几何体是由上部的圆锥和下部的圆台组合而成的,故轴截面的上部是直角三角形,下部为直角梯形构成,故选:D【点评】本题考查旋转体的结构特征,旋转体的轴截面的形状2(5分)若直线ax+by1与圆x2+y21有两个公共点,则点P(a,b)与圆x2+y21的位置关系是()A在圆上B在圆外C在圆内D以上都有可能【分析】根据题意,由直线与圆的位置关系可得圆心到直线ax+by1的距离dr1,变形可得a2+b21,据此分析可得答案【解答】解:根据题意,直线ax+by1与圆x2+y21有两个公共点,即直线与圆相交,则有圆心到直线ax+by1的距离dr1,变形可得a2+b21,则点P(a,b)
9、在圆x2+y21的外部;故选:B【点评】本题考查直线与圆的位置关系,注意分析a、b的关系,属于基础题3(5分)圆心在y轴上,半径为1,且过点(1,2)的圆的方程为()Ax2+(y2)21Bx2+(y+2)21C(x1)2+(y3)21Dx2+(y3)21【分析】法1:由题意可以判定圆心坐标(0,2),可得圆的方程法2:数形结合法,画图即可判断圆心坐标,求出圆的方程法3:回代验证法,逐一检验排除,即将点(1,2)代入四个选择支,验证是否适合方程,圆心在y轴上,排除C,即可【解答】解法1(直接法):设圆心坐标为(0,b),则由题意知,解得b2,故圆的方程为x2+(y2)21故选A解法2(数形结合法
10、):由作图根据点(1,2)到圆心的距离为1易知圆心为(0,2),故圆的方程为x2+(y2)21故选A解法3(验证法):将点(1,2)代入四个选择支,排除B,D,又由于圆心在y轴上,排除C故选:A【点评】本题提供三种解法,三种解题思路,考查圆的标准方程,是基础题4(5分)设l是直线,是两个不同的平面()A若l,l,则 B若l,l,则C若,l,则 lD若,l,则l【分析】对4个选项分别进行判断,即可得出结论【解答】解:若l,l,则 或,相交,故A不正确;根据线面平行的性质可得:若l,经过l的直线与的交线为m,则lm,l,m,根据平面与平面垂直的判定定理,可得,故B正确;若l,则l或l,故C错误;作
11、出正方体ABCDABCD,设平面ABCD为,ADDA为,则,观察正方体,得到:BC,且BC;AD,且AD;AB,且AB与相交面、及直线l满足:,l,则一定有l或l或l与相交,故D不正确故选:B【点评】“由已知想性质,由求证想判定”,也就是说,根据已知条件去思考有关的性质定理;根据要求证的结论去思考有关的判定定理,往往需要将分析与综合的思路结合起来5(5分)已知正方体ABCDA1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为()ABCD【分析】设正方体ABCDA1B1C1D1棱长为2,以DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能
12、够求出异面直线AE与D1F所成角的余弦值【解答】解:设正方体ABCDA1B1C1D1棱长为2,以DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,则A(2,0,0),E(2,2,1)D1(0,0,2),F(0,2,1)(0,2,1),(0,2,1),设异面直线AE与D1F所成角为,则cos|cos,|0|故选:B【点评】本题考查异面直线所成角的余弦值的求法,是基础题解题时要认真审题,仔细解答,注意向量法的合理运用6(5分)点P(4,2)与圆x2+y24上任一点连线的中点轨迹方程是()A(x2)2+(y+1)21B(x2)2+(y+1)24C(x+4)2+(y2)21D(x+2)2+(y
13、1)21【分析】设圆上任意一点为(x1,y1),中点为(x,y),则,由此能够轨迹方程【解答】解:设圆上任意一点为(x1,y1),中点为(x,y),则代入x2+y24得(2x4)2+(2y+2)24,化简得(x2)2+(y+1)21故选:A【点评】本题考查点的轨迹方程,解题时要仔细审题,注意公式的灵活运用7(5分)下列四个命题:(1)存在与两条异面直线都平行的平面;(2)过空间一点,一定能作一个平面与两条异面直线都平行;(3)过平面外一点可作无数条直线与该平面平行;(4)过直线外一点可作无数个平面与该直线平行其中正确的命题的个数是()A1B2C3D4【分析】通过画图举出例子说明(1)的正确性;
14、通过举出反例说明(2)不正确;(3)平面外一点有无数条直线与这个平面平行,这些直线在与这个平面平行的平面内正确;(4)过直线外一点可以作无数个平面与已知直线平行,因为只须这些平面经过这条直线的平行线且不过这条直线即可判断【解答】解:(1)如图,a,b是两条异面直线,过两条异面直线的公垂线的中点作公垂线的垂面,则此垂面与两条异面直线都平行,故(1)正确;(2)不正确若过点A与直线a的平面与直线b平行时,不存在符合要求的平面;(3)正确,因为过平面外一点有无数条直线与这个平面平行,这些直线在与这个平面平行的平面内;(4)正确,过直线外一点可以作无数个平面与已知直线平行,只须这些平面经过这条直线的平
15、行线且不过这条直线即可故正确命题的个数为3故选:C【点评】本题考查两条直线之间的关系,考查线与面之间的关系,考查异面直线的性质,本题是一个判定定理和性质定理的综合题目8(5分)直线x+y+40分别与x轴,y轴交于A,B两点,点P在圆(x2)2+y22上,则ABP面积的取值范围是()A2,6B8,16C,3D2,3【分析】先求出点A与点B的坐标,以线段AB为ABC的高,关键是求点p到直线距离的取值范围,最大值为圆心到直线距离加半径,最小值为圆心到直线距离减半径【解答】解:直线x+y+40分别与x轴,y轴交于A,B两点,A(4,0),B(0,4)|AB|4,设圆心(2,0)到直线x+y+40的距离
16、为d,则d3,设点p到直线x+y+40的距离为h,h的取值范围为2,4,即ABP的高的取值范围是2,4,又ABP面积为,所以ABC面积的取值范围为8,16,故选:B【点评】考查了直线与圆的位置关系,以及求圆上一点到直线距离的最大值和最小值,是中档题9(5分)圆台上、下底面面积分别是、4,侧面积是6,这个圆台的体积是()AB2CD【分析】通过圆台的底面面积,求出上下底面半径,利用侧面积公式求出母线长,然后求出圆台的高,即可求得圆台的体积【解答】解:S1,S24,r1,R2,S6(r+R)l,l2,hV(1+4+2)故选:D【点评】本题是基础题,通过底面面积求出半径,转化为求圆台的高,是本题的难点
17、,考查计算能力,常考题10(5分)过点(1,2)作圆(x1)2+y21的两条切线,切点分别为A,B,则AB所在直线的方程为()AyByCyDy【分析】求出以(1,2)、C(1,0)为直径的圆的方程,将两圆的方程相减即得公共弦AB的方程【解答】解:圆(x1)2+y21的圆心为C(1,0),半径为1,以(1,2)、C(1,0)为直径的圆的方程为:(x1)2+(y+1)21,将两圆的方程相减,即得公共弦AB的方程为2y+10即y故选:B【点评】本题考查了直线和圆的位置关系以及圆和圆的位置关系、圆的切线问题,也考查了数形结合的数学思想,属于基础题目11(5分)方程k(x2)+3有两个不等实根,则k的取
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 学年 四川省 乐山市 十校高二 期中 数学试卷 理科 详细 解答
链接地址:https://www.77wenku.com/p-122830.html