2019-2020学年四川省蓉城名校联盟高二(上)期中数学试卷(文科)含详细解答
《2019-2020学年四川省蓉城名校联盟高二(上)期中数学试卷(文科)含详细解答》由会员分享,可在线阅读,更多相关《2019-2020学年四川省蓉城名校联盟高二(上)期中数学试卷(文科)含详细解答(17页珍藏版)》请在七七文库上搜索。
1、2019-2020学年四川省蓉城名校联盟高二(上)期中数学试卷(文科)一、选择题:1(3分)在空间直角坐标系中,已知点A(2,1,3),B(4,3,0),则A,B两点间的距离是()A5B6C7D82(3分)命题“x1,x22x+10”的否定是()Ax01,x022x0+10Bx01,x022x0+10Cx01,x022x0+10Dx01,x022x0+103(3分)若命题p是真命题,q是真命题,则下列命题中,真命题是()ApqBpqCpqDpq4(3分)双曲线1的渐近线方程是()Ay4xBy2xCD5(3分)若圆C1:(x1)2+(y1)21与圆C2:(x+2)2+(y+3)2r2外切,则正数
2、r的值是()A2B3C4D66(3分)“c1”是“直线x+y+c0与圆(x2)2+(y+1)22相切”的()A必要不充分条件B充分不必要条件C充要条件D既不充分也不必要条件7(3分)已知双曲线C:(a0,b0)的左右顶点分别为A1(a,0),A2(a,0),点B(0,b),若三角形BA1A2为等腰直角三角形,则双曲线C的离心率为()ABC2D38(3分)已知过点(1,2)的直线l与圆(x1)2+(y2)225交于A,B两点,则弦长|AB|的取值范围是()A4,10B3,5C8,10D6,109(3分)经过点P(1,1)作直线l交椭圆于M,N两点,且P为MN的中点,则直线的斜率为()ABCD10
3、(3分)已知圆M:(x2)2+y225(M为圆心,点N(2,0),点A是圆M上的动点,线段AN的垂直平分线交线段AM于P点,则动点P的轨迹是()A两条直线B椭圆C圆D双曲线11(3分)已知椭圆的左右焦点分别为F1,F2,且|F1F2|8,过左焦点F1的直线l与椭圆C交于P,Q两点,连接PF2,QF2,若三角形PQF2的周长为20,QPF290,则三角形PF1F2的面积为()A9B18C25D5012(3分)已知圆,圆,A,B分别是圆C1,C2上的动点若动点P在直线x+y0上,则|PA|+|PB|的最小值为()A3BCD二、填空题:13(3分)双曲线的其中一个焦点坐标为,则实数k 14(3分)两
4、圆x2+y220,x2+y2xy0相交于M,N两点,则公共弦MN所在的直线的方程是 (结果用一般式表示)15(3分)已知椭圆的左焦点为F,动点M在椭圆上,则|MF|的取值范围是 16(3分)给出下列说法:方程表示的图形是一个点;命题“若x+y0,则x1或y1”为真命题;已知双曲线x2y24的左右焦点分别为F1,F2,过右焦点F2被双曲线截得的弦长为4的直线有3条;已知椭圆上有两点A(x0,y0),B(x0,y0),若点P(x,y)是椭圆C上任意一点,且xx0,直线PA,PB的斜率分别为k1,k2,则k1k2为定值其中说法正确的序号是 三、解答题:17已知直线l1:y2x+4,直线l2经过点(1
5、,1),且l1l2(1)求直线l2的方程;(2)记l1与x轴相交于点A,l2与x轴相交于点B,l1与l2相交于点C,求ABC的面积18命题p:方程表示焦点在x轴上的双曲线;命题q:若存在x0R,使得m2sinx00成立(1)如果命题p是真命题,求实数m的取值范围;(2)如果“pq”为假命题,“pq”为真命题,求实数m的取值范围19已知圆C经过M(3,0),N(2,1)两点,且圆心在直线l:2x+y40上(1)求圆C的方程(2)从原点向圆C作切线,求切线方程及切线长20已知双曲线的实轴长为2(1)若C的一条渐近线方程为y2x,求b的值;(2)设F1、F2是C的两个焦点,P为C上一点,且PF1PF
6、2,PF1F2的面积为9,求C的标准方程21已知直线l1:x+my0(mR),l2:mxy2m+40(mR)(1)若直线l1,l2分别经过定点M,N,求定点M,N的坐标;(2)是否存在一个定点Q,使得l1与l2的交点到定点Q的距离为定值?如果存在,求出定点Q的坐标及定值r;如果不存在,说明理由22已知椭圆C长轴的两个端点分别为A(2,0),B(2,0),离心率(1)求椭圆C的标准方程;(2)作一条垂直于x轴的直线,使之与椭圆C在第一象限相交于点M,在第四象限相交于点N,若直线AM与直线BN相交于点P,且直线OP的斜率大于,求直线AM的斜率k的取值范围2019-2020学年四川省蓉城名校联盟高二
7、(上)期中数学试卷(文科)参考答案与试题解析一、选择题:1(3分)在空间直角坐标系中,已知点A(2,1,3),B(4,3,0),则A,B两点间的距离是()A5B6C7D8【分析】由两点间的距离公式计算即可【解答】解:由两点间的距离公式,计算得故选:C【点评】本题考查了空间两点间的距离计算问题,是基础题2(3分)命题“x1,x22x+10”的否定是()Ax01,x022x0+10Bx01,x022x0+10Cx01,x022x0+10Dx01,x022x0+10【分析】根据含有量词的命题的否定即可得到结论【解答】解:命题为全称命题,则命题“x1,x22x+10”的否定是“x01,”故选:A【点评
8、】本题主要考查含有量词的命题的否定,比较基础3(3分)若命题p是真命题,q是真命题,则下列命题中,真命题是()ApqBpqCpqDpq【分析】根据已知中命题p为真命题,q为假命题,结合复合命题真假判断的真值表,可得答案【解答】解:由q是真命题,则q是假命题,由真值表可知pq为真故选:D【点评】本题以命题的真假判断与应用为载体,考查了复合命题,难度不大,属于基础题4(3分)双曲线1的渐近线方程是()Ay4xBy2xCD【分析】根据题意,由双曲线的标准方程分析可得该双曲线的焦点位置以及a、b的值,据此分析可得答案【解答】解:根据题意,双曲线的方程为线1,则其焦点在x轴上,且a5,b10,其渐近线方
9、程为y2x;故选:B【点评】本题考查双曲线的标准方程以及几何性质,涉及双曲线的渐近线方程的计算,属于基础题5(3分)若圆C1:(x1)2+(y1)21与圆C2:(x+2)2+(y+3)2r2外切,则正数r的值是()A2B3C4D6【分析】两圆外切,则圆心距|C1C2|1+r,求出圆心坐标,代入两点间距离公式,即可得到r值【解答】解:圆C1:(x1)2+(y1)21,圆C2:(x+2)2+(y+3)2r2,C1坐标为(1,1),半径为1,C2坐标为(2,3),半径为r,故选:C【点评】本题考查了圆与圆的位置关系,考查了两点间的距离公式,圆的标准方程和圆心半径的关系,考查分析解决问题的能力和计算能
10、力,本题属于基础题6(3分)“c1”是“直线x+y+c0与圆(x2)2+(y+1)22相切”的()A必要不充分条件B充分不必要条件C充要条件D既不充分也不必要条件【分析】由直线x+y+c0与圆(x2)2+(y+1)22相切可得,从而可得c的值,即可作出判断【解答】解:由直线x+y+c0与圆(x2)2+(y+1)22相切,则 或c3,所以为充分不必要条件故选:B【点评】本题以充分与必要条件的判断为载体,主要考查了直线与圆相切的性质的应用7(3分)已知双曲线C:(a0,b0)的左右顶点分别为A1(a,0),A2(a,0),点B(0,b),若三角形BA1A2为等腰直角三角形,则双曲线C的离心率为()
11、ABC2D3【分析】利用已知条件列出关系式,求解e的大小即可【解答】解:由已知可得aba2b2,故选:A【点评】本题考查双曲线的简单性质的应用,是基本知识的考查8(3分)已知过点(1,2)的直线l与圆(x1)2+(y2)225交于A,B两点,则弦长|AB|的取值范围是()A4,10B3,5C8,10D6,10【分析】求出CPl时的弦长得|AB|的最小值,最大值为直径【解答】解:由直线恒过定点P(1,2),圆心C(1,2),则当CPl时弦长最短,此时由,再由l经过圆心时弦长最长为2r10,得|AB|6,10故选:D【点评】本题考查想与圆位置关系的应用,明确当CPl时弦长最短是关键,是基础题9(3
12、分)经过点P(1,1)作直线l交椭圆于M,N两点,且P为MN的中点,则直线的斜率为()ABCD【分析】设出M、N的坐标,利用平方差法以及线段的中点坐标,转化求解直线的斜率即可【解答】解:设M(x1,y1),N(x2,y2),则,由可得,经过点P(1,1)作直线l交椭圆于M,N两点,且P为MN的中点,xp2,yp2,则故选:A【点评】本题考查直线与椭圆的位置关系的综合应用,平方差法的应用,考查转化思想以及计算能力,是中档题10(3分)已知圆M:(x2)2+y225(M为圆心,点N(2,0),点A是圆M上的动点,线段AN的垂直平分线交线段AM于P点,则动点P的轨迹是()A两条直线B椭圆C圆D双曲线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 学年 四川省 蓉城 名校 联盟 期中 数学试卷 文科 详细 解答
链接地址:https://www.77wenku.com/p-122833.html