2020中考数学-动点问题专题训练(含答案)
《2020中考数学-动点问题专题训练(含答案)》由会员分享,可在线阅读,更多相关《2020中考数学-动点问题专题训练(含答案)(14页珍藏版)》请在七七文库上搜索。
1、中考专题训练 动点问题例1. 如图, 在中,于点, 点从点出发, 在线段上以每秒的速度向点匀速运动, 与此同时, 垂直于的直线从底边出发, 以每秒的速度沿方向匀速平移, 分别交、于、,当点到达点时, 点与直线同时停止运动, 设运动时间为秒(1) 当时, 连接、,求证: 四边形为菱形;(2) 在整个运动过程中, 所形成的的面积存在最大值, 当的面积最大时, 求线段的长;(3) 是否存在某一时刻,使为直角三角形?若存在, 请求出此时刻的值;若不存在, 请说明理由 【解答】(1) 证明: 当时,则为的中点, 如答图 1 所示 又,为的垂直平分线,于点,即四边形为菱形 (2) 解: 如答图 2 所示,
2、 由 (1) 知,即,解得:,当秒时,存在最大值, 最大值为,此时(3) 解: 存在 理由如下:若点为直角顶点, 如答图 3所示,此时,即,此比例式不成立, 故此种情形不存在;若点为直角顶点如答图 3所示,此时,即,解得;若点为直角顶点,如答图所示 过点作于点,过点作于点,则,即,解得,在中, 由勾股定理得:,即,解得,在中, 由勾股定理得:在中, 由勾股定理得:,即:化简得:,解得:或(舍 去)综上所述, 当秒或秒时,为直角三角形 例2. 如图, 在同一平面上, 两块斜边相等的直角三角板和拼在一起, 使斜边完全重合, 且顶点,分别在的两旁,(1) 填空:, (2) 点,分别从点,点同时以每秒
3、的速度等速出发, 且分别在,上沿,方向运动, 当点运动到点时,、两点同时停止运动, 连接,求当、点运动了秒时, 点到的距离 (用 含的式子表示)(3) 在 (2) 的条件下, 取中点,连接,设的面积为,在整个运动过程中,的面积存在最大值, 请求出的最大值 (参考数据,【解答】解: (1),;故答案为:,;(2) 过点作于,作,交的延长线于,如图所示:则,点到的距离为;(3),为的中点,的面积梯形的面积的面积的面积,即是的二次函数,有最大值,当时,有最大值为例3. 如图,是正方形的对角线,边在其所在的直线上平移, 将通过平移得到的线段记为,连接、,并过点作,垂足为,连接、(1) 请直接写出线段在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 中考 数学 问题 专题 训练 答案
链接地址:https://www.77wenku.com/p-123036.html