高考总复习:知识讲解_余弦定理_提高
《高考总复习:知识讲解_余弦定理_提高》由会员分享,可在线阅读,更多相关《高考总复习:知识讲解_余弦定理_提高(8页珍藏版)》请在七七文库上搜索。
1、余弦定理编稿:李霞审稿:张林娟【学习目标】1.掌握余弦定理的内容及证明余弦定理的向量方法; 2.熟记余弦定理及其变形形式,会用余弦定理解决两类基本解三角形问题; 3.通过三角函数,余弦定理,向量的数量积等知识间的联系,理解事件之间的联系与辨证统一的关系. 【要点梳理】要点一:学过的三角形知识1.中(1)一般约定:中角A、B、C所对的边分别为、;(2);(3)大边对大角,大角对大边,即; 等边对等角,等角对等边,即;(4)两边之和大于第三边,两边之差小于第三边,即,.2.中,(1),(2)(3),;,要点诠释:初中讨论的三角形的边角关系是解三角形的基本依据要点二:余弦定理及其证明三角形任意一边的
2、平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。即:余弦定理的推导已知:中,及角,求角的对应边.证明:方法一:向量法(1)锐角中(如图), ,即: (*)同理可得:,要点诠释:(1)推导(*)中,与的夹角应通过平移后得到,即向量的起点应重合,因此与的夹角应为,而不是.(2)钝角三角形情况与锐角三角形相同。(3)对于直角三角形中时,, ,也满足余弦定理。方法二:几何法(1)当为锐角三角形时如图,作边上的高根据勾股定理有:,中, = 即:.(2)当为钝角三角形且C为钝角时如图,作边上的高 根据勾股定理有:,.中, 即:仍然成立。(3)在直角中,当时,, ,也满足余弦定理。方法三:解析
3、几何方法利用两点间距离公式这里我们只讨论锐角三角形的情形,对于直角三角形和钝角三角形的情形的讨论相同。如图所示建立坐标系.则点,由、两点间的距离可知,即整理得到.余弦定理的变形公式:要点三:利用余弦定理解三角形1.利用余弦定理可以解决下列两类三角形的问题: 已知三角形的两条边及夹角,求第三条边及其他两个角; 已知三角形的三条边,求其三个角。要点诠释:在余弦定理中,每一个等式均含有四个量,利用方程的观点,可以知三求一.2.解斜三角形的基本问题:已知条件解法解的情况一边和两角(例如a,B,C)1利用A+B+C=180,求A2应用正弦定理求b,c唯一解两边和夹角(例如a,b,C)1应用余弦定理求边c
4、2应用正弦定理求a,b中较短的边所对的角(该角一定是锐角)3利用A+B+C=180,求第三个角.唯一解三边(例如a,b,c)法一:1、应用余弦定理先求任意两个角2用A+B+C=180,求第三个角法二:1、应用余弦定理求a,b,c中最长边所对的角2、应用正弦定理求余下两个角中的任意一个(该角一定是锐角)3、利用A+B+C=180,求第三个角唯一解两边及其中一边的对角(例如a,b,A)此类问题首先要讨论解的情况1应用正弦定理,求另一边的对角(即角B)2、利用A+B+C=180,求第三个角3、应用正弦或余弦定理求第三边两解、一解或无解要点诠释:对于求解三角形的题目,一般都可有两种思路。但要注意方法的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 复习 知识 讲解 余弦 定理 提高
链接地址:https://www.77wenku.com/p-123239.html