高考总复习:知识讲解 分类加法计数原理和分步乘法计数原理(提高)
《高考总复习:知识讲解 分类加法计数原理和分步乘法计数原理(提高)》由会员分享,可在线阅读,更多相关《高考总复习:知识讲解 分类加法计数原理和分步乘法计数原理(提高)(10页珍藏版)》请在七七文库上搜索。
1、分类加法计数原理和分步乘法计数原理编稿:赵雷 审稿:李霞【学习目标】1理解分类加法计数原理和分步乘法计数原理 2理解分类加法计数原理和分步乘法计数原理的区别 3会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题【要点梳理】要点一:分类加法计数原理(也称加法原理)1分类加法计数原理:完成一件事,有类办法.在第1类办法中有种不同方法,在第2类办法中有种不同的方法,在第类办法中有种不同方法,那么完成这件事共有种不同的方法.2加法原理的特点是: 完成一件事有若干不同方法,这些方法可以分成n类; 用每一类中的每一种方法都可以完成这件事; 把每一类的方法数相加,就可以得到完成这件事的所有方
2、法数要点诠释:使用分类加法计数原理计算完成某件事的方法数,第一步是对这件事确定一个标准进行分类,第二步是确定各类的方法数,第三步是取和。3图示分类加法计数原理:由A到B算作完成一件事.直线型流程线表示第1类方案中包括的方法数,折线型流程线表示第2类方案中包括的方法数。从图中可以看出,完成由A到B这件事,共有方法m+n种。要点诠释:用分类加法计数原理计算完成某件事的方法数,“类”要一竿到底,它的起点、终点就是完成这件事的开始与结束,图示分类加法计数原理,用意就在其中。要点二、分步乘法计数原理1.分步乘法计数原理 “做一件事,完成它需要分成n个步骤”,就是说完成这件事的任何一种方法,都要分成n个步
3、骤,要完成这件事必须并且只需连续完成这n个步骤后,这件事才算完成2乘法原理的特点: 完成一件事需要经过n个步骤,缺一不可; 完成每一步有若干种方法; 把每一步的方法数相乘,就可以得到完成这件事的所有方法数要点诠释:使用分步乘法计数原理计算完成某件事的方法数,第一步是对完成这件事进行分步,第二步是确定各步的方法数,第三步是求积。3.图示分步乘法计数原理:由A到C算作完成一件事.设完成这件事的两个步骤为从A到B、从B到C。要点诠释:从A到C算作完成一件事,A是起点,C是终点,点B是中间单元,从A到B是第1步,从B到C是第2步。用分步乘法计数原理解题,按着这个模式施行就可以了,可简单地理解为:AB,
4、有m种方法;BC,有n种方法;AC,有mn种方法。要点三、分类计数原理和分步计数原理的区别:1分类计数原理和分步计数原理的区别:两个原理的区别在于一个和分类有关,一个和分步有关.完成一件事的方法种数若需“分类”思考,则这n类办法是相互独立的,且无论哪一类办法中的哪一种方法都能单独完成这件事,则用加法原理;若完成某件事需分n个步骤,这n个步骤相互依存,具有连续性,当且仅当这n个步骤依次都完成后,这件事才算完成,则完成这件事的方法的种数需用乘法原理计算2. 应用两个原理的分别要注意:若用分类计数原理,要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类计数原理,即加法原理求和得到总数;若用
5、分步计数原理,要做到步骤“完整”完成了所有步骤,恰好完成所有任务,当然步与步之间要相互独立分步后再计算每一步的方法数,最后根据分步计数原理,即乘法原理把完成每一步的方法数相乘得到总数要点四、分类计数原理和分步计数原理的应用1.利用两个基本原理解决具体问题时的思考程序:(1)首先明确要完成的事件是什么,条件有哪些?(2)然后考虑如何完成?主要有三种类型分类或分步。先分类,再在每一类里再分步。先分步,再在每一步里再分类,等等。(3)最后考虑每一类或每一步的不同方法数是多少?2.利用两个基本原理解决具体问题时的注意事项:(1)应用分类计数原理,应注意:分类时,要按一个标准来分,最忌采用双重或多重标准
6、分类;每一类中的每一种方法都可以独立地完成此任务;它的起点、终点就是完成这件事情的开始和结束;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏).(2)应用分步计数原理,应注意:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立; 只要有一步中所采取的方法不同,则对应的完成此事的方法也不同.3.利用两个基本原理解决具体问题时的方法技巧:利用两个基本原理解决具体问题,关键环节是分类或者分步。类与步的关系式辩证的。有些问题需要先分类,再在每一类里再分步;有些问题需要先分步,再在每一步里再分类,等等。到底采
7、用何种顺序分类与分步,要看类的趋势和步的趋势谁大谁小。下面用用流程图直观描述。(1)类中有步情形从A到B算作一件事的完成。完成这件事有两类办法,在第1类办法中有3步,在第2类办法中有2步,每步的方法数见箭线下面的mi,i=1,2,3,4,5。完成AB这件事,共有方法数为m1m2m3+m4m5。(2)步中有类情形从A到D算作完成一件事,简单地记为AD。完成AD这件事,需要经历三步,即AB,BC,CD。其中BC这步又分为三类,这就是步中有类。箭线下面的mi(i=1,2,3,4,5)表示相应步的方法数。完成AD这件事,共有方法数为m1(m2+m3+m4)m5。要点诠释: 对“类”与“步”的理解,要再
8、上一个层次,可进一步地理解为:“类”用“+”号连结,“步”用“”号连结,“类”独立,“步”连续,“类”标志一件事的完成,“步”缺一不可。 使用计数原理解题,大部分离不开分类。分类时,要按一个标准来分,最忌采用双重或多重标准分类。【典型例题】类型一、分类加法计数原理例1. 如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有_个【思路点拨】首要问题是搞清与正八边形有公共边的三角形有几类。【总结升华】应用分类计数原理,应注意:分类时,要按一个标准来分,最忌采用双重或多重标准分类;每一类中的每一种方法都可以独立地完成此任务;它的起点、终点就是完成这件事情的开始和结束;举一反
9、三:【变式1】用数字1,2,3可写出多少个小于1000的正整数? (各位上的数字允许重复)【答案】分三类情况:一位整数,有3个;二位整数,有个;三位整数,有个;故共有个。【变式2】 在所有的两位数中,个位数字大于十位数字的两位数共有多少个?【答案】根据题意,将十位上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个 由分类计数原理知,符合题意的两位数的个数共有8+7+6+5+4+3+2+1=36(个)【变式3】从1,2,3,,10中选出3个不同的数,使这三个数构成等差数列,则这样的数列共有多少个?【答案】
10、根据构成的等差数列的公差,分为公差为1、2、3、4四类.公差为1时,有8216个;公差为2时,满足要求的数列共6212个;公差为3时,有428个;公差为4时,只有224个.由分类计数原理可知,共构成了不同的等差数列16128440个. 类型二、分步乘法计数原理例2.体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有( )A12 种 B7种C24种 D49种【思路点拨】首先弄明白完成一次进出门需分两步走,先进再出。【解析】错解:学生进出体育场大门需分两类,一类从北边的4个门进,一类从南侧的3个门进,由分类计数原理,共有7种方案. 选B错因:没有审清题意本题不仅要考虑
11、从哪个门进,还需考虑从哪个门出,应该用分步计数原理去解题.正解:学生进门有7种选择,同样出门也有7种选择,由分步计数原理,该学生的进出门方案有7749种. 应选D【总结升华】 解决这类问题的关键是搞清分类还是分步用分步乘法计数原理解决问题时,首先要根据问题的特点,确定一个分步的可行标准;其次还要注意完成这件事情必须且只需连续完成这n个步骤后,这件事情才算圆满完成,这时才能使用分步乘法计数原理同时,要弄清每一步骤中完成本步骤的方法种数举一反三:【变式1】从甲地到乙地,一天中有火车2班,从乙地到丙地,一天中有汽车3班,那么从甲地经乙地到丙地共有 种不同的走法。【答案】6;完成这件事,分两个步骤:第
12、一步是乘火车,有2种不同方法;第二步是乘汽车,有3种不同方法。则完成这件事,由分步计数原理,共有N=23=6种不同方法。【变式2】 从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有( )A300种 B240种 C144种 D96种【答案】 四个游览城市中只有巴黎有限制要求,甲、乙不去,因而可以先安排去巴黎的人,再依次安排去其他城市的人,整个事件的安排可以分为四步,每一步安排一个城市,因而按分步乘法计数原理计算 去巴黎的人为除甲、乙两个人外的其余四人,只能有一人去,所以有4种选择 再安排一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考总复习:知识讲解 分类加法计数原理和分步乘法计数原理提高 高考 复习 知识 讲解 分类 加法 计数 原理 分步 乘法 提高
链接地址:https://www.77wenku.com/p-123263.html