高考总复习:知识讲解_直线的点斜式与两点式_基础
《高考总复习:知识讲解_直线的点斜式与两点式_基础》由会员分享,可在线阅读,更多相关《高考总复习:知识讲解_直线的点斜式与两点式_基础(7页珍藏版)》请在七七文库上搜索。
1、直线的点斜式与两点式方程编稿:丁会敏 审稿:王静伟 【学习目标】(1)掌握直线方程的点斜式,并在此基础上掌握直线方程的斜截式、两点式、截距式;(2)能根据直线满足的几何条件,选择恰当的方程形式,求直线方程。【要点梳理】要点一:直线的点斜式方程方程由直线上一定点及其斜率决定,我们把叫做直线的点斜式方程,简称点斜式.要点诠释: 1.点斜式方程是由直线上一点和斜率确定的,点斜式的前提是直线的斜率存在.点斜式不能表示平行于y轴的直线,即斜率不存在的直线;2.当直线的倾斜角为0时,直线方程为;3.当直线倾斜角为90时,直线没有斜率,它的方程不能用点斜式表示.这时直线方程为:.4.表示直线去掉一个点;表示
2、一条直线.要点二:直线的斜截式方程如果直线的斜率为,且与轴的交点为,根据直线的点斜式方程可得,即.我们把直线与轴的交点的纵坐标叫做直线在轴上的截距,方程由直线的斜率与它在轴上的截距确定,所以方程叫做直线的斜截式方程,简称斜截式.要点诠释:1.b为直线在y轴上截距,截距可以取一切实数,即可以为正数、零、负数;距离必须大于或等于零;2.斜截式方程可由过点(0,b)的点斜式方程得到;3.当时,斜截式方程就是一次函数的表示形式.4.斜截式的前提是直线的斜率存在.斜截式不能表示平行于y轴的直线,即斜率不存在的直线.5.斜截式是点斜式的特殊情况,在方程中,是直线的斜率,是直线在轴上的截距.要点三:直线的两
3、点式方程经过两点(其中)的直线方程为,称这个方程为直线的两点式方程,简称两点式.要点诠释:1.这个方程由直线上两点确定;2.当直线没有斜率()或斜率为时,不能用两点式求出它的方程. 3.直线方程的表示与选择的顺序无关.4在应用两点式求直线方程时,往往把分式形式通过交叉相乘转化为整式形式,从而得到的方程中,包含了x1=x2或y1=y2的情况,但此转化过程不是一个等价的转化过程,不能因此忽略由x1、x2和y1、y2是否相等引起的讨论要避免讨论,可直接假设两点式的整式形式要点四:直线的截距式方程若直线与x轴的交点为A(a,0),与y轴的交点为B(0,b),其中,则过AB两点的直线方程为,这个方程称为
4、直线的截距式方程.a叫做直线在x轴上的截距,b叫做直线在y轴上的截距.要点诠释:1.截距式的条件是,即截距式方程不能表示过原点的直线以及不能表示与坐标轴平行的直线.2.求直线在坐标轴上的截距的方法:令x=0得直线在y轴上的截距;令y= 0得直线在x轴上的截距.3截距相等问题中,勿忽略a=b=0即直线过原点时的情况要点五:中点坐标公式若两点P1(x1,y1)、P2(x2,y2),且线段的中点坐标为(x,y),则x=,y=,则此公式为线段的中点坐标公式要点六:直线方程几种表达方式的选取在一般情况下,使用斜截式比较方便,这是因为斜截式只需要两个独立变数,而点斜式需要三个独立变数在求直线方程时,要根据
5、给出的条件采用适当的形式一般地,已知一点的坐标,求过这点的直线,通常采用点斜式,再由其他条件确定斜率;已知直线的斜率,常用斜截式,再由其他条件确定在y 轴上的截距;已知截距或两点选择截距式或两点式从结论上看,若求直线与坐标轴所围成的三角形的面积或周长,则选择截距式求解较方便,但不论选用哪一种形式,都要注意各自的限制条件,以免遗漏【典型例题】类型一:点斜式直线方程 例1求满足下列条件的直线方程。 (1)过点P(4,3),斜率k=3; (2)过点A(1,4),倾斜角为135; (3)过点P(3,4),且与x轴平行;(4)过点P(5,2),且与y轴平行【答案】(1)3x+y+9=0(2)x+y3=0
6、(3)y=4(4)x=5 【解析】 (1)直线过点P(4,3),斜率k=3,由直线方程的点斜式得直线方程为y3=3(x+4),即3x+y+9=0 (2)倾斜角为135,k=tan 135=1,直线方程为y4=(x+1),即x+y3=0 (3)与x轴平行的直线,其斜率k=0,由直线方程的点斜式可得直线方程为y(4)=0(x3),即y=4。 (4)与y轴平行的直线,其斜率k不存在,不能用点斜式方程表示,但直线上点的横坐标均为5,故直线方程为x=5。 【点评】点的坐标以及直线斜率或已知直线上两点的坐标,均可用直线方程的点斜式表示,直线方程的点斜式,应在直线斜率存在的条件下使用,当直线的斜率不存在时,
7、直线方程为x=x0举一反三:【变式1】根据条件写出下列各题中的直线方程:(1)经过点A(1,2),斜率为2;(2)经过点B(1,4),倾斜角为135;(3)经过点C(4,2),倾斜角为90;(4)经过点D(3,2),且与x轴平行。【答案】(1)y2=2(x1); (2)y4=(x+1); (3)x=4; (4)y=2类型二:斜截式直线方程例2写出斜率为2,在y轴上截距为m的直线方程,当m为何值时,直线过点(1,1)?【答案】y=2x+m m=1【解析】 由直线方程的斜截式,得直线方程为y=2x+m。直线过点(1,1),将x=1,y=1代入方程y=2x+m得1=21+m,m=1即为所求。【点评】
8、 (1)选用斜截式表示直线方程的依据是知道(或可以求出)直线的斜率k和直线在y轴上的截距b。(2)直线的斜截式方程的好处在于它比点斜式方程少一个参数,即斜截式方程只要两个参数k、b即可确定直线的方程,而点斜式方程则需要三个参数k、x0、y0才能确定,而且它的形式简洁明了,这样当我们仅知道直线满足一个条件时,由参数选用斜截式方程具有化繁为简的作用。如仅知道直线的斜率为k=2,则我们可设直线方程为y=2x+b,再根据其他条件来求b的值。这种以“退”为进的思想方法是我们数学中常用的思想方法。类似地,若知道直线在y轴上的截距为2,则可设直线方程为y=kx+2(直线斜率存在的情况下)。(3)若直线过某一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 复习 知识 讲解 直线 点斜式 两点 基础
链接地址:https://www.77wenku.com/p-123339.html