高考总复习:知识讲解_直线、平面平行的判定_基础
《高考总复习:知识讲解_直线、平面平行的判定_基础》由会员分享,可在线阅读,更多相关《高考总复习:知识讲解_直线、平面平行的判定_基础(5页珍藏版)》请在七七文库上搜索。
1、直线、平面平行的判定编稿:丁会敏审稿:王静伟 【学习目标】1.掌握直线与平面平行的判定定理;2.掌握两平面平行的判定定理;3能熟练应用直线与平面、平面与平面平行的判定定理解决相关问题【要点梳理】【高清课堂:线面平行的判定与性质39945 知识讲解1】要点一、直线和平面平行的判定文字语言:直线和平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.简记为:线线平行,则线面平行.图形语言:符号语言:、,.要点诠释:(1)用该定理判断直线a与平面平行时,必须具备三个条件:直线a在平面外,即;直线b在平面内,即;直线a,b平行,即ab这三个条件缺一不可,缺少其中任何一个,结
2、论就不一定成立(2)定理的作用将直线和平面平行的判定转化为直线与直线平行的判定,也就是说,要证明一条直线和一个平面平行,只要在平面内找一条直线与已知直线平行即可要点二、两平面平行的判定文字语言:如果一个平面内有两条相交直线与另一个平面平行,则这两个平面平行.图形语言:符号语言:若、,且、,则.要点诠释:(1)定理中平行于同一个平面的两条直线必须是相交的(2)定理充分体现了等价转化的思想,即把面面平行转化为线面平行,可概述为:线面平行面面平行要点三、判定平面与平面平行的常用方法1利用定义:证明两个平面没有公共点,有时直接证明非常困难,往往采用反证法2利用判定定理:要证明两个平面平行,只需在其中一
3、个平面内找两条相交直线,分别证明它们平行于另一个平面,于是这两个平面平行,或在一个平面内找到两条相交的直线分别与另一个平面内两条相交的直线平行3平面平行的传递性:即若两个平面都平行于第三个平面,则这两个平面互相平行【典型例题】类型一、直线与平面平行的判定例1已知AB,BC,CD是不在同一平面内的三条线段,E,F,G分别是AB,BC,CD的中点,求证:AC/平面EFG, BD/平面EFG【解析】 欲证明AC平面EFG,根据直线和平面平行的判定定理,只需证明AC平行于平面EFG内的一条直线,如右图可知,只需证明ACEF证明:如右图,连接AC,BD,EF,GF ,EG在ABC中,E,F分别是AB,B
4、C的中点,ACEF,又AC平面EFG,EF平面EFG,于是AC平面EFG同理可证BD平面EFG【总结升华】由线面平行的判定定理判定直线与平面平行的顺序是:(1)在平面内寻找直线的平行线;(2)证明这两条直线平行;(3)由判定定理得出结论例2已知有公共边AB的两个全等的矩形ABCD和ABEF不在同一个平面内,P、Q分别为对角线AE、BD上的点,且AP=DQ,如右图求证:PQ平面CBE证明:作PMAB交BE于点M,QNAB交BC于点N,则PMQN,AP=DQ,EP=BQ又AB=CD,EA=BD,PMQN四边形PMNQ是平行四边形PQMN综上,PQ平面CBE,MN平面CBE,又PQMN,PQ平面CB
5、E【总结升华】证线面平行,需证线线平行,寻找平行线是解决此类问题的关键举一反三:【高清课堂:线面平行的判定与性质39945 例1】【变式1】在正方体中,是正方形的中心,求证:面 证明:如图,取面ABCD的中心O,连,且四边形是平行四边形,又面【变式2】 已知P是平行四边形ABCD所在平面外一点,E、F分别为AB、PD的中点,求证:AF平面PEC.【解析】证明线面平行,根据判定定理,作出平行四边形,利用平行四边形的性质,证明平面外直线与平面上的直线平行.证明:设PC的中点为G,连接EG、FGF为PD中点,GFCD且GF=CDABCD,AB=CD,E为AB中点,GFAE,GF=AE,四边形AEGF
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 复习 知识 讲解 直线 平面 平行 判定 基础
链接地址:https://www.77wenku.com/p-123346.html