高考总复习:知识讲解_几何概型_提高
《高考总复习:知识讲解_几何概型_提高》由会员分享,可在线阅读,更多相关《高考总复习:知识讲解_几何概型_提高(8页珍藏版)》请在七七文库上搜索。
1、几何概型编稿:丁会敏审稿:王静伟【学习目标】1.了解几何概型的概念及基本特点;2.熟练掌握几何概型中概率的计算公式;3.会进行简单的几何概率计算;4.能运用模拟的方法估计概率,掌握模拟估计面积的思想.【要点梳理】要点一、几何概型1.几何概型的概念:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.2.几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基
2、本事件出现的可能性相等.3.几何概型的概率:一般地,在几何区域中随机地取一点,记事件该点落在其内部一个区域内为事件,则事件发生的概率.说明:(1)的测度不为;(2)其中测度的意义依确定,当分别是线段,平面图形,立体图形时,相应的测度分别是长度,面积和体积.(3)区域为开区域;(4)区域内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关.要点诠释: 几种常见的几何概型(1)设线段是线段L的一部分,向线段L上任投一点,若落在线段上的点数与线段的长度成正比,而与线段在线段L上的相对位置无关,则点落在线段上的概率为:P=的长度/L的长度
3、(2)设平面区域g是平面区域G的一部分,向区域G上任投一点,若落在区域g上的点数与区域g的面积成正比,而与区域g在区域G上的相对位置无关,则点落在区域g上概率为:P=g的面积/G的面积(3)设空间区域上v是空间区域V的一部分,向区域V上任投一点,若落在区域v上的点数与区域v的体积成正比,而与区域v在区域V上的相对位置无关,则点落在区域v上的概率为:P=v的体积/V的体积要点二、均匀随机数的产生 1.随机数的概念 随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的.它可以帮助我们模拟随机试验,特别是一些成本高、时间长的试验,用随机模拟的方法可以起到降低成本,缩短时间的作
4、用.2.随机数的产生方法(1)实例法.包括掷骰子、掷硬币、抽签、转盘等.(2)计算器模拟法.现在大部分计算器的RAND函数都能产生01之间的均匀随机数.(3)计算机软件法.几乎所有的高级编程语言都有随机函数,借用随机函数可以产生一定范围的随机数.要点诠释:1.在区间a,b上的均匀随机数与整数值随机数的共同点都是等可能取值,不同点是均匀随机数可以取区间内的任意一个实数,整数值随机数只取区间内的整数.2.利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题,体现了数学知识的应用价值.3.用随机模拟试验不规则图形的面积的基本思想是:构造一个包含这个图形的规则图形作为参照
5、,通过计算机产生某区间内的均匀随机数,再利用两个图形的面积之比近似等于分别落在这两个图形区域内的均匀随机点的个数之比来解决.4.利用计算机和线性变换Y=X*(b-a)a,可以产生任意区间a,b上的均匀随机数.【典型例题】类型一:与长度有关的几何概型问题例1假设车站每隔10分钟发一班车,随机到达车站,问等车时间不超过3分钟的概率 ?【思路点拨】以两班车出发间隔( 0,10 )区间作为样本空间 S,乘客随机地到达,即在这个长度是10 的区间里任何一个点都是等可能地发生,因此是几何概率问题.【答案】0.3【解析】 记“等车时间不超过3分钟”为事件,要使得等车的时间不超过 3 分钟,即到达的时刻应该是
6、图中包含的样本点,0 S 10P= 0.3 .【总结升华】在本例中,到站等车的时刻X是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X服从0,60上的均匀分布,X为0,60上的均匀随机数.举一反三:【变式1】 某汽车站每隔15 min有一辆汽车到达,乘客到达车站的时刻是任意的,求一位乘客到达车站后等车时间大于10 min的概率 【答案】 【解析】 设上一辆车于时刻T1到达,而下一辆车于时刻T2到达,线段T1T2的长度为15,设T是线段T1T2上的点,且T1T=5,T2T=10,如图所示 记“等车时间大于10 min”为事件A,则当乘客到达车站的时刻t落在线段T1T上时,事件A发生
7、,区域T1T2的长度为15,区域T1T的长度为5 即乘客等车时间大于10 min的概率是【变式2】在面积为S的ABC的边AB上任取一点P,则PBC的面积大于的概率为( ) A B C D【答案】C【变式3】某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率【答案】 【解析】 因为电台每隔1小时报时一次,他在0到60之间任何一个时刻打开收音机是等可能的,所以他在哪个时段打开收音机的概率只与该时间段的长度有关,这符合几何概型的条件,因此,可以通过几何概型的概率公式得到事件发生的概率 于是,设A=等待报时的时间不多于10分钟事件A是打开收音机的时刻位于5060的
8、时间段内,因此由几何概型求概率的公式得 即“等待报时的时间不超过10分钟”的概率为类型二:与面积有关的几何概型问题【高清课堂:几何概型 例4】例2两人约定在2000到2100之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在2000至2100各时刻相见的可能性是相等的,求两人在约定时间内相见的概率【思路点拨】两人不论谁先到最多只等40分钟,设两人到的时间分别为x、y,则当且仅当时,两人才能见面,所以此问题转化为面积性几何概型问题。【答案】 【解析】 设两人分别于x时和y时到达约见地点,要使两人能在约定时间范围内相见,当且仅当两人到达约见地点所有时刻(x,y)的各种可
9、能结果可用图中的单位正方形内(包括边界)的点来表示,两人能在约定的时间范围内相见的所有时刻(x,y)的各种可能结果可用图中的阴影部分(包括边界)来表示因此阴影部分与单位正方形的面积比就反映了两人在约定时间范围内相遇的可能性的大小,因此所求的概率为:【总结升华】 此类问题的难点是把两个时间分别用x,y表示,构成平面内的点(x,y),从而把时间这个一维长度问题转化为平面图形的二维面积问题,从而转化成面积型几何概率问题举一反三:2aroM 【变式1】 平面上画了一些彼此相距的平行线,把一枚半径的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率【答案】【解析】把“硬币不与任一条平行线相碰”的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 复习 知识 讲解 几何 提高
链接地址:https://www.77wenku.com/p-123376.html