高考总复习:知识讲解_不等关系与基本不等式_基础
《高考总复习:知识讲解_不等关系与基本不等式_基础》由会员分享,可在线阅读,更多相关《高考总复习:知识讲解_不等关系与基本不等式_基础(17页珍藏版)》请在七七文库上搜索。
1、不得关系与基本不等式编稿:张林娟 审稿:孙永钊【学习目标】1在复习不等式性质的基础上,介绍了含有绝对值的不等式及其解法,平均值不等式及简单应用、证明不等式的一些基本方法,以及不等式在实际生活中的应用2特别强调了不等式及证明的几何意义和背景,以加深学生对不等式的数学本质的理解、提高学生的逻辑思维能力和分析解决问题的能力【要点梳理】要点一:不等式的性质性质1 对称性:;性质2 传递性:;性质3 加法法则(同向不等式可加性):; 推论:性质4 乘法法则:若,则 推论1: ;推论2:;推理3:;推理4:要点二:含有绝对值的不等式绝对值的几何意义设是一个实数,在数轴上|表示实数对应的点与原点的距离;|-
2、|表示实数对应的点与实数对应的点之间的距离关于绝对值的几个结论定理对任意实数和,有推论 1;23 要点诠释:(1)关于定理,可以把、看作是三角形三边,很象三角形两边之和大于第三边,两边之差小于第三边,这样理解便于记忆,此定理在后面学习复数时,可以推广到比较复数的模长,并有其几何意义,有时也称其为“绝对值的三角形不等式”(2)绝对值不等式|或|c|c|,从左到右是一个不等式放大过程,从右到左是缩小过程,证明不等式可以直接使用,也可通过适当的添、拆项证明不等式,还可利用它消去变量求最值绝对值不等式的解法含绝对值的不等式|的解集不等式0=00|的解集-的解集或-R和型不等式的解法1 先去绝对值符号,
3、化为不等式组:;2解关于的不等式不等式的解法1将不等式两边平方,去绝对值:;2解不等式:含有两个绝对值符号的不等式解法一般有三种解法,分别是“零点划分法”、“利用绝对值的几何意义法”和“利用函数图象法”此外,有时还可采用平方法去绝对值,它只有在不等式两边均为正的情况下才能使用“零点划分法”是解绝对值不等式的最基本方法,一般步骤是:(1)令每个绝对值符号里的代数式等于零,求出相应的根;(2)把这些根按由小到大进行排序,n个根把数轴分为n1个区间;(3)在各个区间上,去掉绝对值符号组成若干个不等式,解这些不等式,求出它们的解集;(4)这些不等式解集的并集就是原不等式的解集要点三:平均值不等式定理1
4、 对任意实数,有(当且仅时,取“=”号)定理2 对任意两个正数,有(当且仅时,取“=”号)定理3 对任意三个正数,有(当且仅时,取“=”号)定理4 对任意三个正数,有(当且仅时,取“=”号)推广 对于n个正数,有(当且仅当时取“=”号)其中,、 叫作这n个正数的算术平均值和几何平均值, 因此这个结论也可以阐述为n个正数的算术平均值不小于它们的几何平均值要点四:不等式的证明不等式的性质和基本不等式是证明不等式的理论依据但是由于不等式的形式多样,因此不等式的证明方法也很多比较法有两种:1求差比较法:任意两个代数式、,可以作差后比较与0的关系,进一步比较与的大小;2求商比较法:任意两个值为正的代数式
5、、,可以作商后比较与1的关系,进一步比较与的大小;要点诠释:(1)比较法通常是进行因式分解或进行配方,利用非负数的性质来进行判断(2)若代数式、均为负数,也可以用求商比较法综合法和分析法综合法和分析法是直接证明的两种常用的思维方法1综合法一般地,从命题的已知条件出发,利用定义、公理、定理及运算法则,经过演绎推理,一步步地接近要证明的结论,直到完成命题的证明,我们把这种思维方法叫做综合法2分析法一般地,从需要证明的命题出发,分析使这个命题成立的充分条件,逐步寻找使命题成立的充分条件,直至所寻求的充分条件显然成立(已知条件、定理、定义、公理等),或由已知证明成立,从而确定所证的命题成立的一种证明方
6、法,叫做分析法要点诠释:综合法的基本思路:执因索果;分析法的基本思路:执果索因它们是思维方向互逆的两种推理方法放缩法通过缩小(或放大)分式的分母(或分子),或通过放大(或缩小)被减式(或减式)来证明不等式,这种证明不等式的方法称为放缩法要点诠释:放缩法的要求较高,要想用好它,必须有目标,目标可以从要证的结论中去寻找几何法通过构造几何图形,利用几何图形的性质来证明不等式的方法称为几何法反证法反证法是间接证明的一种基本方法一般地,首先假设要证明的命题结论不正确,即结论的反面成立,然后利用公理,已知的定义、定理,命题的条件逐步分析,得到和命题的条件或公理、定理、定义及明显成立的事实等矛盾的结论,以此
7、说明假设的结论不成立,从而证明了原命题成立,这样的证明方法叫做反证法反证法的基本思路:假设矛盾肯定要点五:不等式的应用不等式的应用十分广泛,不仅可以解决一些数学问题,而且也可以解决其他学科中以及生产生活中的一些问题。在应用时一般按以下步骤进行:先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;在定义域内,求出函数的最大或最小值;写出正确答案【典型例题】类型一: 绝对值不等式例1解下列关于的不等式:(1); (2); (3)|4|2+5|1; (4)【思路点拨】去绝对值,转化为解一元一次(二次)不等式(组)的形式【
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 复习 知识 讲解 不等 关系 基本 不等式 基础
链接地址:https://www.77wenku.com/p-123385.html