《高考总复习:知识讲解_《概率》全章复习与巩固》由会员分享,可在线阅读,更多相关《高考总复习:知识讲解_《概率》全章复习与巩固(9页珍藏版)》请在七七文库上搜索。
1、概率全章复习与巩固编稿:丁会敏 审稿:王静伟 【学习目标】1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.2.会用互斥事件的概率加法公式求互斥事件的概率.3.理解古典概型及其概率计算公式,会计算一些随机事件发生的概率.4.了解随机数的意义,能运用模拟方法估计概率,初步体会几何概型的意义.【知识网络】【要点梳理】要点一:随机事件的概率1.随机事件的概念在一定的条件下所出现的某种结果叫做事件.(1)随机事件:在一定条件下可能发生也可能不发生的事件;(2)必然事件:在一定条件下必然要发生的事件;(3)不可能事件:在一定条件下不可能发生的事件.2.随机事件的概率事件A
2、的概率:在大量重复进行同一试验时,事件A发生的频率总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A).由定义可知0P(A)1,显然必然事件的概率是1,不可能事件的概率是0.3.事件间的关系(1)互斥事件:不能同时发生的两个事件叫做互斥事件.(2)对立事件:不能同时发生,但必有一个发生的两个事件叫做对立事件.(3)包含:事件A发生时事件B一定发生,称事件A包含于事件B(或事件B包含事件A).要点诠释:1.随机事件是指在一定条件下出现的某种结果,随着条件的改变其结果也会不同,因此强调同一事件必须在相同的条件下进行研究.随机事件可以重复地进行大量实验,每次的实验结果不一定
3、相同,但随着实验的重复进行,其结果呈现规律性.2.频率与概率的区别与联系:概率从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率.3.从集合角度理解互斥事件为两事件交集为空,对立事件为两事件互补.若两事件A与B对立,则A与B必为互斥事件,而若事件A与B互斥,则不一定是对立事件.要点二:古典概型1.基本事件:试验结果中不能再分的最简单的随机事件称为基本事件.基本事件的特点:(1)每个基本事件的发生都是等可能的.(2)因为试验结果是有限个,所以基本事件也只有有限个.(3)任意两个基本事件都是互斥的,一次试验只能出现一个结果,即产生一个基本事件.(4)基
4、本事件是试验中不能再分的最简单的随机事件,其他事件都可以用基本事件的和的形式来表示.2.古典概型的定义:(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等;我们把具有上述两个特点的概率模型称为古典概率模型,简称古典概型.3.计算古典概型的概率的基本步骤为:(1)计算所求事件A所包含的基本事件个数m;(2)计算基本事件的总数n;(3)应用公式计算概率.4.古典概型的概率公式:.应用公式的关键在于准确计算事件所包含的基本事件的个数和基本事件的总数.要点诠释:古典概型的判断:如果一个概率模型是古典概型,则其必须满足以上两个条件,有一条不满足则必不是古典
5、概型.如“掷均匀的骰子和硬币”问题满足以上两个条件,所以是古典概型问题;若骰子或硬币不均匀,则每个基本事件出现的可能性不同,从而不是古典概型问题;“在线段AB上任取一点C,求ACBC的概率”问题,因为基本事件为无限个,所以也不是古典概型问题.要点三:几何概型1.几何概型的概念:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.2.几何概型的基本特点:(1)试验中所有可能出现的结果(基本
6、事件)有无限多个;(2)每个基本事件出现的可能性相等.3.几何概型的概率:一般地,在几何区域中随机地取一点,记事件该点落在其内部一个区域内为事件,则事件发生的概率.说明:(1)的测度不为;(2)其中测度的意义依确定,当分别是线段,平面图形,立体图形时,相应的测度分别是长度,面积和体积;(3)区域为开区域;(4)区域内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关.要点诠释:几种常见的几何概型(1)设线段是线段L的一部分,向线段L上任投一点,若落在线段上的点数与线段的长度成正比,而与线段在线段L上的相对位置无关,则点落在线段上的
7、概率为:P=的长度/L的长度(2)设平面区域g是平面区域G的一部分,向区域G上任投一点,若落在区域g上的点数与区域g的面积成正比,而与区域g在区域G上的相对位置无关,则点落在区域g上概率为:P=g的面积/G的面积(3)设空间区域上v是空间区域V的一部分,向区域V上任投一点,若落在区域v上的点数与区域v的体积成正比,而与区域v在区域V上的相对位置无关,则点落在区域v上的概率为:P=v的体积/V的体积要点四:随机数的产生1.随机数的概念 随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的.它可以帮助我们模拟随机试验,特别是一些成本高、时间长的试验,用随机模拟的方法可以起到
8、降低成本,缩短时间的作用.2.随机数的产生方法:一般用试验的方法,如把数字标在小球上,搅拌均匀,用统计中的抽签法等抽样方法,可以产生某个范围内的随机数.在计算器或计算机中可以应用随机函数产生某个范围的伪随机数,当作随机数来应用.3.随机模拟法(蒙特卡罗法):用计算机或计算器模拟试验的方法,具体步骤如下:(1)用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;(2)统计代表某意义的随机数的个数M和总的随机数个数N;(3)计算频率作为所求概率的近似值.要点诠释:1.对于抽签法等抽样方法试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节
9、省时间.2.随机函数RANDBETWEEN(a,b)产生从整数a到整数b的取整数值的随机数.3. 随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验,比如现在很多城市的重要考试采用产生随机数的方法把考生分配到各个考场中.4.在区间a,b上的均匀随机数与整数值随机数的共同点都是等可能取值,不同点是均匀随机数可以取区间内的任意一个实数,整数值随机数只取区间内的整数.5.利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题,体现了数学知识的应用价值.6.用随机模拟试验不规则图形的面积的基本思想是,构造一个包含这个图形的规则图形作为参
10、照,通过计算机产生某区间内的均匀随机数,再利用两个图形的面积之比近似等于分别落在这两个图形区域内的均匀随机点的个数之比来解决.7.利用计算机和线性变换Y=X*(b-a)a,可以产生任意区间a,b上的均匀随机数.要点五:求解概率问题应当注意的问题1.求解概率问题应首先分清是哪类概率问题,针对不同的概型灵活选择相应的方法及公式.2.求解概率的应用问题一般可分为三步:用字母恰当地表示相关事件;明确事件之间的关系,如互斥、对立、独立等;运用正确的计算公式.3.对于稍微复杂的事件的概率求解时,通常有两种方法,一是将所求事件转化为彼此互斥的事件的和,二是先求出此事件的对立事件(适用于“至多”“至少”型的事
11、件概率)的概率.4.几何概型问题时常借助图形的直观帮助分析.【典型例题】要点一:随机事件与概率例1某射手在相同条件下进行射击,结果如下: (1)问该射手射击一次,击中靶心的概率约是多少? (2)假设该射手射击了300次,估计击中靶心的次数是多少? 【思路点拨】弄清频率和概率的含义及它们之间的关系是解题的关键 【解析】(1)由表可知概率约为0.9; (2)估计击中靶心的次数为3000.9270(次)【总结升华】本题中利用概率知识估计击中靶心的次数是一种非常科学的决策方法举一反三:【变式1】若在同等条件下进行次重复试验得到某个事件A发生的频率,则随着的逐渐增大,有( )A.与某个常数相等 B.与某
12、个常数的差逐渐减小C.与某个常数的差的绝对值逐渐减小 D.与某个常数的附近摆动并趋于稳定【答案】本题选D,根据概率的定义.要点二:互斥事件与对立事件例2经统计,在某储蓄所一个营业窗口等候的人数及相应概率如下:(1)至多2人排队等候的概率是多少?(2)至少3人排队等候的概率是多少?【思路点拨】利用互斥事件概率加法公式计算【解析】记“等候的人数为0”为事件A,“1人等候”为事件B,“2人等候”为事件C,“3人等候”为事件D,“4人等候”为事件E,“5人及5人以上等候”为事件F,则易知A、B、C、D、E、F互斥 (1)记“至多2人排队等候”为事件G,则GABC, P(G)P(A+B+C)P(A)+P
13、(B)+P(C) 0.1+0.16+0.30.56 (2)记“至少3人排队等候”为事件H,则HDEF, P(H)P(D+E+F)P(D)+P(E)+P(F)0.3+0.1+0.040.44【总结升华】第(2)问也可以这样解:因为G与H是对立事件,所以P(H)1P(G)10.560.44举一反三:【变式1】某地区的年降水量在下列范围内的概率如下表所示:年降水量(单位:mm)概率0.120.250.160.14(1)求年降水量在内的概率;(2)求年降水量在内的概率.【答案】(1)(2)【解析】(1)记这个地区的年降水量在、范围内分别为事件,这4个事件是彼此互斥的,根据互斥事件的概率加法公式,年降水
14、量在范围内的概率是年降水量在范围内的概率是.(2)年降水量在范围内的概率是年降水量在范围内的概率是.要点三:古典概型例35张奖券中有2张是中奖的,首先由甲抽一张,然后由乙抽一张,求: (1)甲中奖的概率P(A); (2)甲、乙都中奖的概率P(B); (3)只有乙中奖的概率P(C); (4)乙中奖的概率P(D) 【思路点拨】先确定事件总数,再确定四个事件中包含的基本事件个数,用古典概率公式求解【解析】甲、乙两人按顺序各抽一张,5张奖券分别为A1,A2,B1,B2,B3,其中A1,A2为中奖券,则基本事件为(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,A1),(A2,B1
15、),(A2,B2),(A2,B3),(B1,A1),(B1,A2),(B1,B2),(B1,B3),(B2,A1),(B2,A2),(B2,B1),(B2,B3),(B3,A1),(B3,A2),(B3,B1),(B3,B2),共20种(1)若“甲中奖”,则有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,A1),(A2,B1),(A2,B2),(A2,B3),共8种,故P(A) (2)甲、乙都中奖含有的基本事件有(A1,A2),(A2,A1),共2种,所以P(B)(3)“只有乙中奖”的基本事件有(B1,A1),(B2,A1),(B3,A1),(B1,A2),(B2,A
16、2),(B3,A2),共6种,故(4)“乙中奖”的基本事件有(A2,A1),(B1,A1),(B2,A1),(B3,A1),(Al,A2),(B1,A2),(B2,A2),(B3,A2),共8种,故【总结升华】1、利用古典概型的计算公式时应注意两点:(1)所有的基本事件必须是互斥的;(2)m为事件A所包含的基本事件数,求m值时,要做到不重不漏.2、古典概型解题步骤:(1)阅读题目,搜集信息;(2)判断是否是等可能事件,并用字母表示事件;(3)求出基本事件总数和事件所包含的结果数;(4)用公式求出概率并下结论.举一反三:【变式1】在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙
17、两个盒子中各取出1个球,每个小球被取出的可能性相等.()求取出的两个球上标号为相邻整数的概率;()求取出的两个球上标号之和能被3整除的概率.【答案】() ()【解析】设从甲、乙两个盒子中各取1个球,其数字分别为,用表示抽取结果,则所有可能有,共16种. ()所取两个小球上的数字为相邻整数的结果有, , , , ,共6种. 故所求概率.()所取两个球上的数字和能被3整除的结果有, , , , ,共5种. 故所求概率为.【变式2】从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.【答案】【解析】每次取出一个,取后不
18、放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2)和,(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产用A表示“取出的两种中,恰好有一件次品”这一事件,则A=(a1,b1),(a2,b1),(b1,a1),(b1,a2),事件A由4个基本事件组成,因而,P(A)=.要点四:几何概型例4、从甲地到乙地有一班车在到到达,若某人从甲地坐该班车到乙地转乘到出发的汽车到丙地去,问他能赶上车的概率是多少?【思路点拨】此题中班车出发的时间与甲到达的时间都是随机的,设为两个变量. 然后
19、把这两个变量所满足的条件写成集合形式,并把所研究事件A的集合也分析得出. 把两个集合用平面区域表示,特别注意不等式所表示区域.【解析】到达乙地的时间是到之间的任一时刻,某人从乙地转乘的时间是到之间的任一时刻,如果在平面直角坐标系中用轴表示班车到达乙地的时间,轴表示从乙地出发的时间,因为到达乙地时间和从乙地出发的时间是随机的,则试验的全部结果可看作是边长为0.5的正方形.设“他能赶上车”为事件,则事件的条件是,构成事件的区域为图中的阴影部分.由几何概型公式,得,即他能赶上车的概率为0.875.【总结升华】在概率问题中,与面积有关或可以转化为二维空间的,可以采取几何概型的方法去解决.直接与面积有关
20、的,可直接计算,有时需要先进行转化成二维空间,然后利用几何概型.举一反三:【变式1】在01之间随机选择两个数,这两个数对应的点把长度为1的线段分成了三条线段,试求这三条线段能构成三角形的概率 【解析】设三条线段的长度分别为x,y,1-x-y,则即在平面上建立如图所示的平面直角坐标系,直线x0,y0,y-x+1围成如图所示三角形区域G(不包括边界),每一对(x,y)对应着G内的点(x,y),由题意知,每个试验结果出现的可能性相等,因此,试验属于几何概型三条线段能构成三角形,当且仅当 即 因此图中的阴影区域g就表示“三条线段能构成三角形”,容易求得g的面积为,G的面积为,则P(这三条线段能构成三角
21、形)【变式2】已知关于x的二次函数(1)设集合P-1,1,2,3,4,5和Q-2,-1,1,2,3,4,分别从集合P和Q中随机取一个数作为a和b,求函数在区间1,+)上是增函数的概率:(2)设点(a,b)是区域内的随机点,求函数在区间1,+)上是增函数的概率【思路点拨】(1)用古典概型的概率公式计算(2)属于几何概型问题,用几何概型的知识求解【解析】(1) 函数的图像的对称轴为,要使函数在区间1,+)上为增函数,当且仅当a0且,即2ba,a0若a1,则b-2,-1;若a2,则b-2,-1,1;若a3,则b-2,-1,1;若a4,则b-2,-1,1,2;若a5,则b-2,-1,1,2 满足条件的事件包含事件的个数是2+3+3+4+416 所求事件的概率为(2)由(1)知,当且仅当2ba且a0时,函数在区间1,+)上为增函数,依条件可知试验的全部结果所构成的区域为构成所求事件的区域为如图所示阴影部分由得交点坐标为, 所求事件的概率为【总结升华】几何概型的概率问题关键是数形结合,将问题转化成与长度、角度、面积、体积等相关的类型解决
链接地址:https://www.77wenku.com/p-123390.html