高考总复习:知识讲解_《解析几何初步》全章复习与巩固 -提高
《高考总复习:知识讲解_《解析几何初步》全章复习与巩固 -提高》由会员分享,可在线阅读,更多相关《高考总复习:知识讲解_《解析几何初步》全章复习与巩固 -提高(14页珍藏版)》请在七七文库上搜索。
1、 解析几何初步全章复习与巩固编稿:丁会敏 审稿:王静伟 【学习目标】1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式,能根据两条直线的斜率判定这两条直线平行或垂直;2.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系;3.能用解方程组的方法求两直线的交点坐标;4.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离;5.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程;6.掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;7.能根据给定直线、圆的
2、方程,判断直线与圆、圆与圆的位置关系.【知识网络】【要点梳理】要点一:直线方程的几种形式 (1)直线方程的几种表示形式中,除一般式外都有其适用范围,任何一种表示形式都有其优越性,需要根据条件灵活选用 (2)在求解与直线方程有关的问题中,忽视对斜率不存在时的直线方程的讨论是常见的错误,应特别警惕(3)确定直线方程需要且只需两个独立条件,利用待定系数法求直线方程是常用方法常用的直线方程有: ; ; ; (为参数)要点二:两条直线的位置关系1特殊情况下的两直线平行与垂直 (1)当两条直线的斜率都不存在时,两直线的倾斜角都为,互相平行;(2)当一条直线的斜率不存在(倾斜角为),另一条直线的倾斜角为时,
3、两直线互相垂直2斜率都存在时两直线的平行:(1)已知直线和,则=且(2)已知直线:和:,则 要点诠释:对于一般式方程表示的直线的位置的判定,可以先将方程转化为斜截式形式,再作判定3斜率都存在时两直线的垂直:(1)已知直线和,则 ;(2)已知直线:和:,则要点三:点到直线的距离公式1点到直线距离公式:点到直线的距离为:2两平行线间的距离公式 已知两条平行直线和的一般式方程为:,:,则与的距离为要点诠释:一般在其中一条直线上随意地取一点M,再求出点M到另一条直线的距离即可要点四:对称问题1点关于点成中心对称点关于点成中心对称的对称中心恰是这两点为端点的线段的中点,因此中心对称的问题是线段中点坐标公
4、式的应用问题设,对称中心为,则P关于A的对称点为2点关于直线成轴对称由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”利用“垂直”“平分”这两个条件建立方程组,就可求出对称点的坐标,一般情形如下:设点关于直线的对称点为,则有,求出、特殊地,点关于直线的对称点为;点关于直线的对称点为3两点关于点对称、两点关于直线对称的常见结论:(1)点关于x轴的对称点为;(2)点关于y轴的对称点为;(3)点关于原点的对称点为;(4)点关于直线的对称点为;(5)点关于直线的对称点为 要点五:圆的方程求圆的方程通常果用待定系数法,若条件涉及圆心、半径等,可设成圆的标准方程;若条件涉及圆过一些定点,则可设成圆的一
5、般方程运用圆的几何性质可以使运算简便1圆的标准方程,其中为圆心,为半径.要点诠释:(1)如果圆心在坐标原点,这时,圆的方程就是.有关图形特征与方程的转化:如:圆心在x轴上:b=0;圆与y轴相切时:;圆与x轴相切时:;与坐标轴相切时:;过原点:.(2)圆的标准方程圆心为,半径为,它显现了圆的几何特点.(3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a、b、r这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法.2圆的一般方程当时,方程叫做圆的一般方程.为圆心,为半径.要点诠释:由方程得(1)当时,方程只有实数解.它表示一个点.(2)当时,方程没有实
6、数解,因而它不表示任何图形(3)当时,可以看出方程表示以为圆心,为半径的圆. 要点六:点和圆的位置关系如果圆的标准方程为,圆心为,半径为,则有(1)若点在圆上(2)若点在圆外(3)若点在圆内要点七:直线与圆的位置关系1.直线与圆的位置关系:(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点.2.直线与圆的位置关系的判定方法:(1)代数法:判断直线与圆C的方程组成的方程组是否有解.如果有解,直线与圆C有公共点;有两组实数解时,直线与圆C相交;有一组实数解时,直线与圆C相切;无实数解时,直线与圆C相离.(2)几何法:设直线,圆,圆心到直线的距离记为
7、,则:当时,直线与圆C相交;当时,直线与圆C相切;当时,直线与圆C相离.要点诠释:(1)当直线和圆相切时,求切线方程,一般要用到圆心到直线的距离等于半径;求切线长,一般要用到切线长、圆的半径、圆外点与圆心连线构成的直角三角形,由勾股定理解得.(2)当直线和圆相交时,有关弦长的问题,要用到弦心距、半径和半弦构成的直角三角形,也是通过勾股定理解得,有时还用到垂径定理.(3)当直线和圆相离时,常讨论圆上的点到直线的距离问题,通常画图,利用数形结合来解决.要点八:圆与圆的位置关系1.圆与圆的位置关系:(1)圆与圆相交,有两个公共点;(2)圆与圆相切(内切或外切),有一个公共点;(3)圆与圆相离(内含或
8、外离),没有公共点.2.圆与圆的位置关系的判定:(1)代数法:判断两圆的方程组成的方程组是否有解.有两组不同的实数解时,两圆相交;有一组实数解时,两圆相切;方程组无解时,两圆相离.(2)几何法:圆与圆,两圆圆心距,则:当时,两圆相交;当时,两圆外切;当时,两圆外离;当时,两圆内切;当时,两圆内含.要点诠释:判定圆与圆的位置关系主要是利用几何法,通过比较两圆的圆心距和两圆的半径的关系来确定,这种方法运算量小.也可利用代数法,但是利用代数法解决时,一是运算量大,二是方程组仅有一解或无解时,两圆的位置关系不明确,还要比较两圆的圆心距和两圆半径的关系来确定.因此,在处理圆与圆的位置关系时,一般不用代数
9、法.要点九:求圆的切线方程的常用方法:(1)直接法:应用常见结论,直接写出切线方程;(2)待定系数法:设出切点坐标或切线斜率,由题意列出方程(组)解得切点坐标或切线斜率,写出点斜式,最后将点斜式化为一般式;(3)定义法:根据直线方程的定义求出切线方程.常见圆的切线方程:过圆上一点的切线方程是;过圆上一点的切线方程是:. 要点十:空间直角坐标系空间直角坐标系中坐标的求法:过该点作两条轴所确定平面的平行平面交另一轴于一点,交点在这条轴上的坐标就是已知点相应的一个坐标确定简单几何体的顶点坐标是今后正确运用坐标法解题的关键,必须要熟练且正确地掌握空间直角坐标系的建立与中点坐标的确定方法【典型例题】类型
10、一:直线方程的综合问题例1已知A(-m-3,2),B(-2m-4,4),C(-m,m),D(3,3m+2),若直线ABCD,求m的值 【思路点拨】两直线垂直的前提条件是、均存在且不为零,所以这类问题应分斜率存在和不存在两种情况讨论【答案】1或-1 【解析】 A、B两点纵坐标不相等, AB与x轴不平行 ABCD, CD与x轴不垂直,-m3,m-3 当AB与x轴垂直时, -m-3-2m-4,解得m-1 而m-1时,C、D纵坐标均为-1, CDx轴,此时ABCD,满足题意当AB与x轴不垂直时,由斜率公式, ABCD, , 即,解得m1 综上,m的值为1或-1 举一反三:【变式1】已知:,求使的的值【
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解析几何初步 高考总复习:知识讲解_解析几何初步全章复习与巩固 -提高 高考 复习 知识 讲解 解析几何 初步 巩固 提高
文档标签
- 解析几何初步
- 解析几何
- 第二章平面解析几何初步章末复习课学案含答案
- 解析几何两条直线夹角公式
- 高中解析几何三角形面积
- 第7章解析几何初步
- 高考总复习知识讲解_概率全章节复习与巩固
- 高考总复习知识讲解_算法初步全章复习与巩固_ 基础
- 高考总复习知识讲解_统计全章复习与巩固
- 高考总复习知识讲解_概率全章复习与巩固
- 高考总复习知识讲解_不等式全章复习与巩固_提高
- 高考总复习知识讲解_推理与证明全章复习与巩固_基础
- 高考总复习知识讲解_推理与证明全章复习与巩固_提高
- 高考总复习知识讲解_几何概型_提高
- 图形与几何知识复习教案
- 高考总复习知识讲解_立体几何初步全章复习与巩固 -基础
- 平行线全章复习与巩固提高知识讲解
- 高考总复习知识讲解_解析几何初步全章复习与巩固 -基础
- 高考总复习知识讲解_计数原理全章复习与巩固
链接地址:https://www.77wenku.com/p-123391.html