必修2全册导学案及答案(118页)
《必修2全册导学案及答案(118页)》由会员分享,可在线阅读,更多相关《必修2全册导学案及答案(118页)(119页珍藏版)》请在七七文库上搜索。
1、1 高一数学必修 2 导学案 主备人: 备课时间: 备课组长: 1.1.1 棱柱、棱锥、棱台的结构特征 一、学习目标:一、学习目标: 1、知识与技能 : (1)能根据几何结构特征对空间物体进行分类。 (2)会用语言概述棱柱、棱 锥、棱台的结构特征。 (3)会表示有关几何体以及柱、锥、台的分类。 2、过程与方法 : (1)通过直观感受空间物体,概括出柱、锥、台的几何结构特征。 (2)观察、 讨论、归纳、概括所学的知识。 3、情感态度与价值观 : (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积 极性,同时提高学生的观察能力。 (2)培养学生的空间想象能力和抽象概括能力。 二、学习重
2、点、难点:二、学习重点、难点: 学习重点:感受大量空间实物及模型,概括出柱、锥、台的结构特征。 学习难点:柱、锥、台的结构特征的概括。 三、使用说明及学法指导三、使用说明及学法指导: 1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。 2、要求小班、重点班学生全部完成,平行班学生完成 A、B 类问题。 3、A 类是自主探究,B 类是合作交流。 四、知识链接四、知识链接: : 平行四边形: 矩形: 正方体: 五、学习过程:五、学习过程: A 问题 1:什么是多面体、多面体的面、棱、顶点? A 问题 2:什么是旋转体、旋转体的轴? B 问题 3:什么是棱柱、锥、台
3、?有何特征?如何表示?如何分类? C 问题 4;探究一下各种四棱柱之间有何关系? C 问题 5:质疑答辩,排难解惑 1 有两个面互相平行,其余各面都是平行四边形的几何体是不是棱柱?(举反例说明) 2 棱柱的任何两个平面都可以作为棱柱的底面吗? A 例 1:如图,截面 BCEF 把长方体分割成两部分,这两部分是否是棱柱? 2 A B C D A1B1 C1 D1E F B 例 2:一个三棱柱可以分成几个三棱锥? 六、达标测试六、达标测试 A1、下面没有对角线的一种几何体是 ( ) A三棱柱 B四棱柱 C五棱柱 D六棱柱 A2、若一个平行六面体的四个侧面都是正方形,则这个平行六面体是 ( ) A正
4、方体 B正四棱锥 C长方体 D直平行六面体 B3、棱长都是 1 的三棱锥的表面积为 ( ) A B2 C3 D4 3333 B4、正六棱台的两底边长分别为 1cm,2cm,高是 1cm,它的侧面积为 ( ) Acm2 Bcm2 Ccm2 D3cm2 2 79 79 3 2 32 B5、若长方体的三个不同的面的面积分别为 2,4,8,则它的体积为 ( ) A2 B4 C8 D12 C6、一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面 ( ) A必须都是直角三角形 B至多只能有一个直角三角形 C至多只能有两个直角三角形 D可能都是直角三角形 A7、长方体的共顶点的三个侧面面积分别为 3,5
5、,15,则它的体积为_. 七、小结与反思:七、小结与反思: 【励志良言】不为失败找理由,只为成功找方法。 3 高一数学必修 2 导学案 主备人: 备课时间: 备课组长: 1.1.2 圆柱、锥、台、球、组合体的结构特征 一、学习目标:一、学习目标: 1、知识与技能:能根据几何结构特征对空间物体进行分类。会用语言概述圆柱、锥、台、组 合体的结构特征。会表示圆柱、锥、台的分类。 2、过程与方法:通过直观感受空间物体,概括出柱、锥、台的几何结构特征。观察、讨论、 归纳、概括所学的知识。 3、情感态度与价值观:感受空间几何体存在于现实生活周围,增强学习的积极性,同时提高 观察能力。培养空间想象能力和抽象
6、概括能力。 二、学习重点、难点:二、学习重点、难点: 学习重点:感受大量空间实物及模型、概括出圆柱、锥、台的结构特征。 学习难点:圆柱、锥、台的结构特征的概括。 三、使用说明及学法指导三、使用说明及学法指导: 1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。 2、要求小班、重点班学生全部完成,平行班学生完成 A、B 类问题。 3、A 类是自主探究,B 类是合作交流。 四、知识链接四、知识链接: : 棱柱: 棱锥: 棱台: 五、学习过程:五、学习过程: A 问题 1:观察下列图形探究各自的特点及共同点 A 问题 2:什么是圆柱、锥、台?有何特征?如何表示? A
7、 问题 3:什么是球?有何特征?如何表示? A 问题 4:什么叫简单组合体?简单组合体构成的两种基本形式是一: ; 二: 。 A 例 1:底面半径为 1,高为 2 的圆柱,在 A 点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由 A 点 爬到 B 点,问蚂蚁爬行的最短距离是多少? A B A 例 2:已知球的半径为 10cm,一个截面圆的面积是cm2,则球心到截面圆圆心的距离36 是 . 六、达标测试六、达标测试 4 A1、图(1)是由哪个平面图形旋转得到的 ( ) A B C D A2、下列说法正确的是 ( ) A圆锥的母线长等于底面圆直径 B圆柱的母线与轴垂直 C圆台的母线与轴平行 D球的直径必过球
8、心 A3、下列说法正确的个数为 ( ) 经过圆柱任意两条母线的截面是一个矩形 连接圆柱上、下底面圆周上的两点的线段是圆柱的母线 圆柱的任意两条母线互相平行 A0 B.1 C.2 D.3 A4、下列几何体的轴截面一定是圆面的是 ( ) A圆柱 B.圆锥 C.球 D.圆台 B5、如果两个球的体积之比为 8:27,那么两个球的表面积之比为 ( ) A.8:27 B.2:3 C.4:9 D.2:9 B6、A、B 为球面上不同两点,则通过 A、B 所有大圆的个数 ( ) A.1 个 B.无数个 C. 一个也没有 D.1 个或无数个 B7、球的半径扩大为原来的 2 倍,它的体积扩大为原来的 _ 倍. 七、
9、小结与反思:七、小结与反思: 【励志良言】 “三心二意”另解:信心、恒心、决心;创意、乐意。 5 5 高一数学必修 2 导学案 主备人: 备课时间: 备课组长: 1.2.1 空间几何体的三视图 一、学习目标:一、学习目标: 知识与技能:(1)掌握画三视图的基本技能;(2)丰富空间想象力 过程与方法:主要通过亲身实践,动手作图,体会三视图的作用 情感态度与价值观:(1)提高空间想象力(2)体会三视图的作用 二、学习重点、难点:二、学习重点、难点: 学习重点:画出简单组合体的三视图 学习难点:识别三视图所表示的空间几何体 三、 使用说明及学法指导使用说明及学法指导: 1、先浏览教材,再逐字逐句仔细
10、审题,认真思考、独立规范作答,不会的先绕过,做好记号。 2、要求小班、重点班学生全部完成,平行班学生完成 A、B 类问题。 3、A 类是自主探究,B 类是合作交流。 四、知识链接四、知识链接: : 圆柱: 圆锥: 圆台: 五、学习过程:五、学习过程: A 问题:什么是投影、投影线、投影面? 投射线可自一点发出, 也可是一束与投影面成一定角度的平行线, 这样就使投影法分为中心投 影和平行投影 A 问题 2:什么是中心投影、平行投影? 物体上某一点与其投影面上的投影点的连线是平行的,则为平行投影,如果聚于一点,则为中 心投影 A 问题 3. (1).光线 叫做几何体的正视图. (2).光线 叫做几
11、何体侧视图. (3).光线 叫做几何体的俯视图. 几何体的正视图、侧视图和俯视图统称为几何体的三视图。 A 例.根据长方体的模型,请您画出它们的三视图,并观察三种图形之间的关系 三视图的画法规则: 、 、 。 A 例. .请您画出圆柱、圆锥、圆台、球的三视图 6 六、达标测试六、达标测试 A1、两条相交直线的平行投影是 ( ) A两条相交直线 B一条直线 C两条平行线 D两条相交直线或一条直线 A2、如果一个几何体的正视图与侧视图均为全等的等边三角形,俯视图为一个圆及其圆心, 那么这个几何体为 ( ) A棱柱 B棱锥 C圆锥 D圆柱 B3、课本 15 页 1.、2、3、4 题 七、小结与反思:
12、七、小结与反思: 【励志良言【励志良言】当你感到悲哀痛苦时,最好是去学些什么东西。学习会使你永远立于不败之地。 7 高一数学必修 2 导学案 主备人: 备课时间: 备课组长: 1.2.2 空间几何体的直观图 一、学习目标:一、学习目标: 知识与技能:(1)掌握斜二测画法画水平设置的平面图形的直观图。 (2)采用对比的方法了 解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。 过程与方法:通过观察和类比,利用斜二测画法画出空间几何体的直观图。 情感态度与价值观:(1)提高空间想象力与直观感受。 (2)体会对比在学习中的作用。 (3) 感受几何作图在生产活动中的应用。 二、学习重
13、点、难点:二、学习重点、难点: 学习重点:用斜二测画法画空间几何体的直观图。 学习难点:用斜二测画法画空间几何体的直观图。 三、 使用说明及学法指导使用说明及学法指导: 1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。 2、要求小班、重点班学生全部完成,平行班学生完成 A、B 类问题。 3、A 类是自主探究,B 类是合作交流。 四、知识链接四、知识链接: : 正视图: 侧视图: 俯视图: 五、学习过程:五、学习过程: A 例 1.用斜二测画法画水平放置的正六边形的直观图。 画水平放置的多边形的直观图的关键是确定多边形顶点的位置, 因为多边形顶点的位置一旦确
14、定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归 结为确定点的位置的画法。强调斜二测画法的步骤。 B 例 2.用斜二测画法画长、宽、高分别是 4cm、3cm、2cm 的长方体的直观 1111 ABCDABC D 图。 B 例 3.课本 P1图 1.2-,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。 8 六、达标测试六、达标测试 A1、利用斜二测画法得到的下列结论正确的是 ( ) 三角形的直观图是三角形 平行四边形的直观图是平行四边形 正方形的直观图是正方形 菱形的直观图是菱形 A B C D B2、已知正三角形 ABC 的边长为,那么它的平面直观图
15、的面积为 a 七、小结与反思:七、小结与反思: 【励志良言】【励志良言】生命之灯因热情而点燃,生命之舟因拼搏而前行。 9 高一数学必修 2 导学案 主备人: 备课时间: 备课组长: 空间几何体结构空间几何体结构 周测试周测试 一、选择题:(50 分) 1、在棱柱中 ( ) A只有两个面平行 B所有的棱都平行 C所有的面都是平行四边形 D两底面平行,且各侧棱也互相平行 2、下列说法错误的是 ( ) A:由两个棱锥可以拼成一个新的棱锥 B:由两个棱台可以拼成一个新的棱台 C:由两个圆锥可以拼成一个新的圆锥 D:由两个圆台可以拼成一个新的圆台 3、下列说法正确的是 ( ) A:以直角三角形的一边为轴
16、旋转而成几何体是圆锥 B:圆柱、圆锥、圆台的底面都是圆面 C:以直角梯形的一腰为轴旋转成的是圆台 D:圆锥的侧面展开图为扇形,这个扇形所在的圆的半径等于圆锥底面圆的半径 4、下列关于长方体的叙述不正确的是 ( ) A:长方体的表面共有 24 个直角 B:长方体中相对的面都互相平行 C:长方体中某一底面上的高的长度就是两平行底面间的距离: D;两底面间的棱互相平行且相等的六面体是长方体 5、将图 1 所示的三角形线直线 l 旋转一周,可以得到如图 2 所示的几何体的是哪一个三角形 ( ) 6、如图一个封闭的立方体,它 6 个表面各标出 1、2、3、4、5、6 这 6 个数字,现放成下面 3 个不
17、同的位置,则数字 l、2、3 对面的数字是 ( ) A4、5、6 B6、4、5 C5、4、6 D5、6、4 7、如图,能推断这个几何体可能是三棱台的是 ( ) AA1B12,AB3,B1C13,BC4 BA1Bl1,AB2,BlCl1.5,BC3,A1C12,AC3 CAlBl1,AB2,B1Cl1.5,BC3,AlCl2,AC4 DABA1B1,BCB1C1,CAC1A1 8、有下列命题(1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; (2)圆锥顶点与底面圆周上任意一点的连线是圆锥的母线; (3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线; 10 (4)
18、圆柱的任意两条母线所在的直线是互相平行的; 其中正确的是( ) A (1) (2) B (2) (3) C (1) (3) D (2) (4) 9、下列命题中错误的是( ) A圆柱的轴截面是过母线的截面中面积最大的一个 B圆锥的轴截面是所有过顶点的截面中面积最大的一个 C圆台的所有平行于底面的截面都是圆面 D圆锥所有的轴截面是全等的等腰三角形 10、图 1 是由图 2 中的哪个平面图旋转而得到的( ) 二、填空题(20 分) 11、如图,长方体ABCDA1BlClD1中,AD3,AAl4,AB5,则从A点沿表面到Cl的最短距 离为_ _ 12、在三棱锥SABC中,SASBSC1,ASBASCB
19、SC30,如图,一只蚂蚁从 点A出发沿三棱锥的表面爬行一周后又回到A点,则蚂蚁爬过的最短路程为_ _ 13、高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那 么水瓶的形状是_ _ 14 如图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题: 点 H 与点 C 重合; 点 D 与点 M 与点 R 重合; 点 B 与点 Q 重合; 点 A 与点 S 重合 其中正确命题的序号是_ _ (注:把你认为正确的命题的序号 都填上) 11 三、解答题三、解答题(30 分) 15、 (15 分) 长方体的全面积是 11, 十二条棱长度之和为 24, 求这个长方体的
20、一条对角线长? 16、 (15 分)一个圆锥的底面半径为 2cm,高为 6cm,在其中有一个高为 xcm 的内接圆柱。 (1)用 x 表示圆柱的轴截面面积 S;(2)当 x 为何值时,S 最大? 【励志金语】【励志金语】在学业的峰峦上,有汗水的溪流飞淌;在智慧的珍珠里,有勤奋的心血闪光。 12 高一数学必修 2 导学案 主备人: 备课时间: 备课组长: 1.3.1 空间几何体的表面积和体积 一、学习目标:一、学习目标: 知识与技能 : 通过学习掌握柱、锥、台表面积、体积的计算公式并会灵活运用,会求简单组合 体的表面积和体积。 过程与方法:通过对柱、锥、台表面积和体积的公式的探究学习,体会观察、
21、类比、归纳的推 理方法。 情感态度与价值观:培养学生从量的角度认识几何体,培养学生的空间想象能力和思维能力。 二、学习重点、难点:二、学习重点、难点: 学习重点:柱、锥、台表面积、体积的计算公式。 学习难点:利用相应公式求柱、锥、台表面积、体积。 三、 使用说明及学法指导使用说明及学法指导: 掌握并理解公式,熟练运用公式,培养空间想象能力。 四、知识链接四、知识链接: : 柱、锥、台体的基本特征: 五、学习过程:五、学习过程: A 问题 1:棱柱、棱锥、棱台棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的侧面展开图是什么? 如何计算它们的表面积? 例 1:已知棱长为,各面都是等边三角形的
22、四面体 SABC,求它的表面积? a A 问题 2: 圆柱圆柱、 圆锥圆锥、 圆台圆台都是旋转体, 它们的侧面展开图是什么?如何计算它们的表面积? 例 2: 如图,一个圆台形花盆盆口直径 20 cm,盆底直径为 15cm,底部渗水圆孔直径为 1.5 cm, 盆壁长 15cm那么花盆的表面积约是多少平方厘米(取 3.14,结果精确到 1 )? A 问题 3:柱体、锥体、台体的体积如何计算?(分别写出计算公式) cm20 cm15 cm15 13 例 3:有一堆规格相同的铁制(铁的密度是 78g/)六角螺帽共重 5.8kg,已知底面是 3 cm 正六边形,边长为 12mm,内孔直径为 10mm,高
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 必修 全册导学案 答案 118
链接地址:https://www.77wenku.com/p-123528.html