2019-2020学年山西大学附中高二(上)期中数学试卷(理科)含详细解答
《2019-2020学年山西大学附中高二(上)期中数学试卷(理科)含详细解答》由会员分享,可在线阅读,更多相关《2019-2020学年山西大学附中高二(上)期中数学试卷(理科)含详细解答(22页珍藏版)》请在七七文库上搜索。
1、2019-2020学年山西大学附中高二(上)期中数学试卷(理科)一选择题:(本题有12个小题,每小题3分,共36分)1(3分)直线xy+10的倾斜角为()ABCD2(3分)如图,平行四边形OABC是水平放置的一个平面图形的直观图,其中OA4,OC2,AOC30,则下列叙述正确的是()A原图形是正方形B原图形是非正方形的菱形C原图形的面积是D原图形的面积是3(3分)若ab0,bc0,则直线ax+by+c0一定不过()A第一象限B第二象限C第三象限D第四象限4(3分)设l为直线,是两个不同的平面,下列命题中正确的是()A若l,l,则B若l,l,则C若l,l,则D若,l,则l5(3分)点A(3,2)
2、,B(3,2),直线axy10与线段AB相交,则实数a的取值范围是()ABa1或a1C1a1D或6(3分)如图,在四面体ABCD中,点P、Q、M、N分别是棱AB、BC、CD、AD的中点,截面PQMN是正方形,则下列结论错误的为()AACCDBAC截面PQMNCACBDD异面直线PM与BD所成的角为457(3分)已知点A(1,2),B(1,4),若直线l过原点,且A,B两点到直线l的距离相等,则直线l的方程为()Ayx或x0Byx或y0Cyx或y4xDyx或8(3分)在直三棱柱ABCA1B1C1中,ABACBC2,AA11,则点A到平面A1BC的距离为()ABCD9(3分)用一块圆心角为240、
3、半径为R的扇形铁皮制成一个无底面的圆锥容器(接缝忽略不计),则该容器的体积为()ABCD10(3分)当点P(3,2)到直线mxy+12m0的距离最大值时,m的值为()AB0C1D111(3分)如图,在棱长为a的正方体ABCDA1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上任意两点,且EF的长为定值,则下面的四个值中不为定值的是()A点P到平面QEF的距离B直线PQ与平面PEF所成的角C三棱锥PQEF的体积D二面角PEFQ的大小12(3分)如图所示,在棱长为6的正方体ABCDA1B1C1D1中,点E,F分别是棱C1D1,B1C1的中点,过A,E,F三点作该正方体的截
4、面,则截面的周长为()ABCD二填空题:(本题有5个小题,每小题4分,共20分)13(4分)圆台的两个底面面积之比为4:9,母线与底面的夹角是60,轴截面的面积为,则圆台的侧面积为 14(4分)正三棱柱的底面边长为2,高为2,则它的外接球表面积为 15(4分)平行六面体ABCDA1B1C1D1中,棱AB、AD、AA1的长均为1,A1ADA1ABDAB,则对角线AC1的长为 16(4分)若点M(m,n)为直线l:3x+4y+20上的动点,则m2+n2的最小值 17(4分)如图所示,在正方体ABCDA1B1C1D1中,M、N分别是棱AB、CC1的中点,MB1P的顶点P在棱CC1与棱C1D1上运动,
5、有以下四个命题:平面MB1PND1;平面MB1P平面ND1A1;MB1P在底面ABCD上的射影图形的面积为定值;MB1P在侧面D1C1CD上的射影图形是三角形其中正确命题的序号是 三解答题:(本题有4个小题,共44分,请将推理、计算过程写在答题卡上)18(10分)已知直线2xy10与直线x2y+10交于点P(1)求过点P且垂直于直线3x+4y150的直线l1的方程;(结果写成直线方程的一般式)(2)求过点P并且在两坐标轴上截距相等的直线l2方程(结果写成直线方程的一般式)19(10分)如图,在RtAOB中,OAB,斜边AB4RtAOC可以通过RtAOB以直线AO为轴旋转得到,且二面角BAOC是
6、直二面角动点D在斜边AB上(1)求证:平面COD平面AOB;(2)设CD与平面AOB所成角的最大值为,求tan值20(12分)在如图所示的空间几何体中,平面ACD平面ABC,ACD与ACB是边长为2的等边三角形,BE2,BE和平面ABC所成的角为60,且点E在平面ABC上的射影落在ABC的平分线上()求证:DE平面ABC;()求二面角EBCA的余弦值21(12分)如图1,四棱锥PABCD中,PD底面ABCD,面ABCD是直角梯形,M为侧棱PD上一点该四棱锥的俯视图和侧(左)视图如图2所示(1)证明:BC平面PBD;(2)线段CD上是否存在点N,使AM与BN所成角的余弦值为?若存在,找到所有符合
7、要求的点N,并求CN的长;若不存在,说明理由2019-2020学年山西大学附中高二(上)期中数学试卷(理科)参考答案与试题解析一选择题:(本题有12个小题,每小题3分,共36分)1(3分)直线xy+10的倾斜角为()ABCD【分析】把直线的方程化为斜截式,求出斜率,根据斜率和倾斜角的关系,倾斜角的范围,求出倾斜角的大小【解答】解:直线y+10 即 yx+1,故直线的斜率等于,设直线的倾斜角等于,则 0,且tan,故 60,故选:B【点评】本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小求出直线的斜率是解题的关键2(3分)如图,平行四边形OABC是水平放置的一个平
8、面图形的直观图,其中OA4,OC2,AOC30,则下列叙述正确的是()A原图形是正方形B原图形是非正方形的菱形C原图形的面积是D原图形的面积是【分析】将直观图还原为平面图形,可以发现原平面图形不是菱形,由SOABC,得到S原图形【解答】解:将直观图还原为平面图形,如图所示,可以发现原平面图形不是菱形,故A,B均错误;SOABC,S原图形,故C正确,D错误故选:C【点评】本题考查命题真假的判断,考查平面图形的直观图的性质等基础知识,考查运算求解能力,是基础题3(3分)若ab0,bc0,则直线ax+by+c0一定不过()A第一象限B第二象限C第三象限D第四象限【分析】由题意可得斜率0,在y轴上的截
9、距0,即直线的倾斜角为顿角,在y轴上的截距大于0,故直线不经过第三象限【解答】解:直线ax+by+c0,即 y,若ab0 且bc0,则斜率0,在y轴上的截距为0,即直线的倾斜角为顿角,在y轴上的截距大于0,故直线不经过第三象限,故选:C【点评】本题考查确定直线位置的方法,即根据直线的倾斜角和它在y轴上的截距来确定直线在坐标系终的位置,属于基础题4(3分)设l为直线,是两个不同的平面,下列命题中正确的是()A若l,l,则B若l,l,则C若l,l,则D若,l,则l【分析】根据线面平行的几何特征及面面平行的判定方法,可判断A;根据面面平行的判定方法及线面垂直的几何特征,可判断B;根据线面平行的性质定
10、理,线面垂直及面面垂直的判定定理,可判断C;根据面面垂直及线面平行的几何特征,可判断D【解答】解:若l,l,则平面,可能相交,此时交线与l平行,故A错误;若l,l,根据垂直于同一直线的两个平面平行,可得B正确;若l,l,则存在直线m,使lm,则m,故此时,故C错误;若,l,则l与可能相交,可能平行,也可能线在面内,故D错误;故选:B【点评】本题考查的知识点是空间中直线与直线的位置关系,直线与平面的位置关系及平面与平面之间的位置关系,熟练掌握空间线面关系的几何特征及判定方法是解答的关键5(3分)点A(3,2),B(3,2),直线axy10与线段AB相交,则实数a的取值范围是()ABa1或a1C1
11、a1D或【分析】由直线axy10的方程,判断恒过P(0,1),求出KPA与KPB,结合图象,求出满足条件的直线斜率的取值范围【解答】解:由直线axy10的方程,判断恒过P(0,1),如下图示:KPA1,KPB1,结合图象可得:实数a的取值范围是:a1或a1故选:B【点评】求恒过P点且与线段AB相交的直线的斜率的取值范围,有两种情况:当AB,在P竖直方向上的同侧时,(如本题)计算KPA与KPB,若KPAKPB,则直线的斜率kKPA,KPB当AB,在P竖直方向上的异侧时,(如下图)计算KPA与KPB,若KPAKPB,则直线的斜率k(,KPAKPB,+)就是过p点的垂直x轴的直线与线段有交点时,斜率
12、范围写两段区间,无交点时写一段区间6(3分)如图,在四面体ABCD中,点P、Q、M、N分别是棱AB、BC、CD、AD的中点,截面PQMN是正方形,则下列结论错误的为()AACCDBAC截面PQMNCACBDD异面直线PM与BD所成的角为45【分析】由中位线可得线线的位置关系及数量关系,又是正方形可得角的大小,进而判断命题的真假【解答】解:题意可知,截面PQMN是正方形,则PQQM,且PQQM,PQM90,PMQ45,又点P、Q、M、N分别是棱AB、BC、CD、AD的中点,MNAC,且MNAC,MN面PQMN,AC面PQMN,因为AC面PQMN,QMBD,QMBD,ACBD,ACBD,所以A不正
13、确,B,C正确;QMBD,所以PM与BD所成的角等于QM与BD所成的角45,所以D正确故选:A【点评】本题考查了命题的真假判断与应用属于简单题7(3分)已知点A(1,2),B(1,4),若直线l过原点,且A,B两点到直线l的距离相等,则直线l的方程为()Ayx或x0Byx或y0Cyx或y4xDyx或【分析】利用分类讨论思想的应用和直线的方程的应用求出结果【解答】解:当直线l与直线AB平行时,直线AB的斜率为,此时直线l的方程为yx;当直线l过线段AB的中点时,AB中点的坐标为(0,3),此时直线l的方程为x0故选:A【点评】本题考查的知识要点:直线的方程的应用,主要考察学生的运算能力和转换能力
14、,属于基础题型8(3分)在直三棱柱ABCA1B1C1中,ABACBC2,AA11,则点A到平面A1BC的距离为()ABCD【分析】先求出A1ABC的体积等于,再利用余弦定理求出cosBA1C,从而sinBA1C,从而得到2,设点A到平面A1BC的距离为h,由,能求出点A到平面A1BC的距离【解答】解直三棱柱ABCA1B1C1中,ABACBC2,AA11,cosBA1C,sin,2,设点A到平面A1BC的距离为h,则,解得h故选:B【点评】本题考查点到平面的距离的求法,是中档题,解题时要认真审题,注意等体积法、余弦定理的合理运用9(3分)用一块圆心角为240、半径为R的扇形铁皮制成一个无底面的圆
15、锥容器(接缝忽略不计),则该容器的体积为()ABCD【分析】根据题意求出扇形围成的圆锥底面圆半径和高,再计算圆锥的体积【解答】解:扇形的圆心角为240,半径为R;设扇形围成的圆锥底面半径为r,高为h;则2rR,解得r;hR,则该圆锥的体积为Vr2hR故选:A【点评】本题考查了圆锥的结构特征与体积计算问题,是基础题10(3分)当点P(3,2)到直线mxy+12m0的距离最大值时,m的值为()AB0C1D1【分析】可得直线过定点,Q(2,1),结合图象可知当PQ与直线垂直时,点到直线距离最大,由直线的垂直关系可得m【解答】解:直线mxy+12m0可化为y1m(x2),由直线点斜式方程可知直线恒过定
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 学年 山西大学 中高 期中 数学试卷 理科 详细 解答
链接地址:https://www.77wenku.com/p-123960.html