六年级奥数第27讲-同余法解题(教)
《六年级奥数第27讲-同余法解题(教)》由会员分享,可在线阅读,更多相关《六年级奥数第27讲-同余法解题(教)(18页珍藏版)》请在七七文库上搜索。
1、学科教师辅导讲义学员编号: 年 级:六年级 课 时 数:3学员姓名:辅导科目:奥数学科教师:授课主题第27讲同余法解题授课类型T同步课堂P实战演练S归纳总结教学目标余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。授课日期及时段T(Textbook-Based)同步课堂知识梳理 一、带余除法的定义及性质一般地,如果a是整数,b是整数(b0),若有ab=qr,也就是abqr, 0rb;我们称上面的除法算式为一个带余除法算式。这里:(1)当时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当时:我们称a不可以被b
2、整除,q称为a除以b的商或不完全商二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:ab ( mod m ),左边的式子叫做同余式。同余式读作:a同余于b,模m。由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除
3、用式子表示为:如果有ab ( mod m ),那么一定有abmk,k是整数,即m|(ab)三、中国剩余定理1.中国古代趣题韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人。刘邦茫然而不知其数。 我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少? 首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。 2.核心思想和方法对于这一类问题,我们有一套看
4、似繁琐但是一旦掌握便可一通百通的方法,下面我们就以孙子算经中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。先由,即5和7的最小公倍数出发,先看35除以3余2,不符合要求,那么就继续看5和7的“下一个”倍数是否可以,很显然70除以3余1类似的,我们再构造一个除以5余1,同时又是3和7的公倍数的数字,显然21可以符合要求。最后再构造除以7余1,同时又是3,5公倍数的数字,45符合要求,那么所
5、求的自然数可以这样计算:,其中k是从1开始的自然数。也就是说满足上述关系的数有无穷多,如果根据实际情况对数的范围加以限制,那么我们就能找到所求的数。例如对上面的问题加上限制条件“满足上面条件最小的自然数”,那么我们可以计算得到所求如果加上限制条件“满足上面条件最小的三位自然数”,我们只要对最小的23加上3,5,7即可,即23+105=128。典例分析 考点一:带余除法的定义和性质例1、两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_【解析】因为被除数减去8后是除数的4倍,所以根据和倍问题可知,除数为,所以,被除数为。例2、用一个自然数去除另一个自然数,商为40,余数
6、是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?【解析】本题为带余除法定义式的基本题型。根据题意设两个自然数分别为x,y,可以得到,解方程组得,即这两个自然数分别是856,21.例3、一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数【解析】因为一个两位数除以13的商是6,所以这个两位数一定大于,并且小于;又因为这个两位数除以11余6,而78除以11余1,这个两位数为考点二:三大余数定理的应用例1、一个三位数除以17和19都有余数,并且除以17后所得的商与余数的和等于它除以19后所得到的商与余数的和那么这样的三位数中最大数是多少,最小数是多少?【解析】设这个三
7、位数为,它除以17和19的商分别为和,余数分别为和,则根据题意可知,所以,即,得所以是9的倍数,是8的倍数此时,由知由于为三位数,最小为100,最大为999,所以,而,所以,得到,而是9的倍数,所以最小为9,最大为54当时,而,所以,故此时最大为;当时,由于,所以此时最小为所以这样的三位数中最大的是930,最小的是154例2、被除所得的余数是多少?【解析】31被13除所得的余数为5,当n取1,2,3,时被13除所得余数分别是5,12,8,1,5,12,8,1以4为周期循环出现,所以被13除的余数与被13除的余数相同,余12,则除以13的余数为12;30被13除所得的余数是4,当n取1,2,3,
8、时,被13除所得的余数分别是4,3,12,9,10,1,4,3,12,9,10,以6为周期循环出现,所以被13除所得的余数等于被13除所得的余数,即4,故除以13的余数为4;所以被13除所得的余数是例3、除以41的余数是多少?【解析】找规律:,所以77777是41的倍数,而,所以可以分成399段77777和1个7组成,那么它除以41的余数为7例4、求所有的质数P,使得与也是质数【解析】如果,则,都是质数,所以5符合题意如果P不等于5,那么P除以5的余数为1、2、3或者4,除以5的余数即等于、或者除以5的余数,即1、4、9或者16除以5的余数,只有1和4两种情况如果除以5的余数为1,那么除以5的
9、余数等于除以5的余数,为0,即此时被5整除,而大于5,所以此时不是质数;如果除以5的余数为4,同理可知不是质数,所以P不等于5,与至少有一个不是质数,所以只有满足条件例5、甲、乙、丙三数分别为603,939,393某数除甲数所得余数是除乙数所得余数的2倍,除乙数所得余数是除丙数所得余数的2倍求等于多少?【解析】根据题意,这三个数除以都有余数,则可以用带余除法的形式将它们表示出来: 由于,要消去余数, , ,我们只能先把余数处理成相同的,再两数相减这样我们先把第二个式子乘以2,使得被除数和余数都扩大2倍,同理,第三个式子乘以4于是我们可以得到下面的式子: 这样余数就处理成相同的最后两两相减消去余
10、数,意味着能被整除,51的约数有1、3、17、51,其中1、3显然不满足,检验17和51可知17满足,所以等于17考点三:余数综合应用例1、设是质数,证明:,被除所得的余数各不相同【解析】假设有两个数、,(),它们的平方,被除余数相同那么,由同余定理得,即,由于是质数,所以或,由于,均小于且大于0,可知,与互质,也与互质,即,都不能被整除,产生矛盾,所以假设不成立,原题得证例2、从1,2,3,n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为多少? 【解析】被13除的同余序列当中,如余1的同余序列,1、14、27、40、53、66,其中只要取到两个相邻的,这两个数的差为13;
11、如果没有两个相邻的数,则没有两个数的差为13,不同的同余序列当中不可能有两个数的差为13,对于任意一条长度为x的序列,都最多能取个数,使得取出的数中没有两个数的差为13,即从第1个数起隔1个取1个基于以上,n个数分成13个序列,每条序列的长度为或,两个长度差为1的序列,要使取出的数中没有两个数的差为13,能够被取得的数的个数之差也不会超过1,所以为使57个数中任意两个数的差都不等于13,则这57个数被分配在13条序列中,在每条序列被分配的数的个数差不会超过1,那么13个序列有8个序列分配了4个数,5个序列分配了5个数,则这13个序列中8个长度为8,5个长度为9,那么当n最小为时,可以取出57个
12、数,其中任两个数的差不为13,所以要使任取57个数必有两个数的差为13,那么n的最大值为108例3、已知n是正整数,规定,令,则整数m除以2008的余数为多少?【解析】2008能够整除,所以的余数是2007例4、有2个三位数相乘的积是一个五位数,积的后四位是1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是8,求两个三位数的和。【解析】本题条件仅给出了两个乘数的数字之和,同时发现乘积的一部分已经给出,即乘积的一部分数字之和已经给出,我们可以采用弃九法原理的倒推来构造出原三位数。因为这是一个一定正确的算式,所以一定可以满足弃九法的条件,两个三位数除以9的余数分别为1和8,所以等
13、式一边除以9的余数为8,那么1031除以9的余数也必须为8,只能是3.将31031分解质因数发现仅有一种情况可以满足是两个三位数的乘积,即所以两个三位数是143和217,那么两个三位数的和是360。例5、设的各位数字之和为,的各位数字之和为,的各位数字之和为,的各位数字之和为,那么?【解析】由于一个数除以9的余数与它的各位数字之和除以9的余数相同,所以与、 除以9都同余,而2009除以9的余数为2,则除以9的余数与除以9的余数相同,而除以9的余数为1,所以除以9的余数为除以9的余数,即为5另一方面,由于,所以的位数不超过8036位,那么它的各位数字之和不超过,即;那么的各位数字之和,的各位数字
14、之和,小于18且除以9的余数为5,那么为5或14,的各位数字之和为5,即考点四:中国剩余定理例1、一个自然数在1000和1200之间,且被3除余1,被5除余2,被7除余3,求符合条件的数【解析】方法1:先列出除以3余1的数:1,4,7,10,13,16,;再列出除以5余2的数:2,7,12,17,22,27,;这两列数中,首先出现的公共数是73与5的最小公倍数是15两个条件合并成一个就是整数,列出这一串数是7,22,37,52,;再列出除以7余3的数:3,10,17,24,31,38,45,52,;就得出符合题目条件的最小数是52事实上,我们已把题目中三个条件合并成一个:被105除余52那么这
15、个数在1000和1200之间,应该是方法2:我们先找出被3除余1的数:1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,;被5除余2的数:2,7,12,17,22,27,32,37,42,47,52,57,;被7除余3的数:3,10,17,24,31,38,45,52,;三个条件都符合的最小的数是52,其后的是一次加上3、5、7的最小公倍数,直到加到1000和1200之间结果是方法3:设这个自然数为,被3除余1,被5除余2,可以理解为被3除余,被5除与,所以满足前面两个条件的 (为自然数),只需除以7余3,即除以7余3,而,只需m除以7余3,
16、m最小为3,所以满足三个条件的最小自然数为,那么这个数在1000和1200之间,应该是例2、一个大于10的自然数,除以5余3,除以7余1,除以9余8,那么满足条件的自然数最小为多少? 【解析】根据总结,我们发现三个数中前两个数的除数与余数的和都是,这样我们可以把余数都处理成8,即一个数除以5余3相当于除以5余8,除以7余1相当于除以7余8,所以可以看成这个数除以5、7、9的余数都是8,那么它减去8之后是5、7、9的公倍数而,所以这个数最小为例3、一个数除以3余2,除以5余3,除以7余4,问满足条件的最小自然数为多少?【解析】法一:根据总结,我们发现前面两种都不符合,所以可以使用普遍适用的“中国
17、剩余定理”,步骤如下:分别找出除以7余4的3、5的公倍数,除以5余3的3、7的公倍数,除以3余2的5、7的公倍数,分别是:60、63、35;可见满足我们的条件,但是要求的是满足条件的最小的自然数,158不是最小的,对此的处理方法就是减去3、5、7的最小公倍数的若干倍,使结果小于最小公倍数所以答案为:法二:逐步构造符合条件的最小自然数,首先求符合后面两个条件的最小自然数,依次用7的倍数加4,当4被加上两个7时得到18,恰好除以5余3,此时符合后两个条件;再依次用7和5的最小公倍数的倍数加18,当18被加上1个35个,得到53,检验符合三个条件所以所求的最小自然数就是53.例4、在200至300之
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 六年级 奥数第 27 解题
链接地址:https://www.77wenku.com/p-125298.html