六年级奥数第20讲-抽屉原理(学)
《六年级奥数第20讲-抽屉原理(学)》由会员分享,可在线阅读,更多相关《六年级奥数第20讲-抽屉原理(学)(12页珍藏版)》请在七七文库上搜索。
1、学科教师辅导讲义学员编号: 年 级:六年级 课 时 数:3学员姓名:辅导科目:奥数学科教师:授课主题第20讲 抽屉原理授课类型T同步课堂P实战演练S归纳总结教学目标理解抽屉原理的基本概念、基本用法;掌握用抽屉原理解题的基本过程;能够构造抽屉进行解题;利用最不利原则进行解题;利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。授课日期及时段T(Textbook-Based)同步课堂知识梳理 一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很
2、多有趣的问题,并且常常能够起到令人惊奇的作用许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决。二、抽屉原理的定义一般情况下,把n1或多于n1个苹果放到n个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。三、抽屉原理的解题方案1、利用公式进行解题苹果抽屉商余数余数:(1)余数1, 结论:至少有(商1)个苹果在同一个抽屉里 (2)余数, 结论:至少有(商1)个苹果在同一个抽屉里 (3)余数0, 结论:至少有“商”个苹果在同一个抽屉里2、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方
3、法、特殊值方法。典例分析 考点一:直接利用公式解题例1、只鸽子要飞进个笼子,每个笼子里都必须有只,一定有一个笼子里有只鸽子对吗?例2、人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有 人的头发的根数相同。例3、“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等例4、在任意的四个自然数中,是否其中必有两个数,它们的差能被整除?例5、求证:对于任意的8个自然数,一定能从中找到6个数a,b,c,d,e,f,使得是105的倍数例6、某班有16名学生,每个月教师把学生分成两个小组问最少要经过几个月,才能
4、使该班的任意两个学生总有某个月份是分在不同的小组里?例7、一次数学竞赛出了10道选择题,评分标准为:基础分10分,每道题答对得3分,答错扣 1分,不答不得分。问:要保证至少有4人得分相同,至少需要多少人参加竞赛?考点二:构造抽屉利用公式进行解题例1、在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可以从口袋中随意取出个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样你能说明这是为什么吗?例2、从1,2,3,2010,2011这些自然数中,最多可以取出多少个数,使得其中每两个数的差不等于4?例3、时钟的表盘上按标准的方式标着1,2,3,11,12这12
5、个数,在其上任意做n个120的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值 例4、有苹果和桔子若干个,任意分成堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数?考点三:最不利原则例1、“走美”主试委员会为三八年级准备决赛试题每个年级道题,并且至少有道题与其他各年级都不同如果每道题出现在不同年级,最多只能出现次本届活动至少要准备 道决赛试题例2、在张卡片上不重复地编写上,请问至少要随意抽出几张卡片才能保证所抽出卡片上的数相乘后之乘积可被整除?例3、从1,2,3,4,5,99,100这100个数中任意选出
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 六年级 奥数第 20 抽屉 原理
链接地址:https://www.77wenku.com/p-125311.html