四年级奥数第29讲-容斥问题(学)
《四年级奥数第29讲-容斥问题(学)》由会员分享,可在线阅读,更多相关《四年级奥数第29讲-容斥问题(学)(8页珍藏版)》请在七七文库上搜索。
1、学科教师辅导讲义学员编号: 年 级:四年级 课 时 数:3学员姓名:辅导科目:奥数学科教师: 授课主题第29讲-容斥问题 授课类型T同步课堂P实战演练S归纳总结教学目标 了解容斥原理二量重叠和三量重叠的内容 掌握容斥原理在组合计数等各个方面的应用授课日期及时段T(Textbook-Based)同步课堂知识梳理 一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:,则称这一公式为包含与排除原理,简称容斥原理图示如下:表示小圆部分,表示大
2、圆部分,表示大圆与小圆的公共部分,记为:,即阴影面积图示如下:表示小圆部分,表示大圆部分,表示大圆与小圆的公共部分,记为:,即阴影面积1先包含重叠部分计算了次,多加了次;2再排除把多加了次的重叠部分减去 包含与排除原理告诉我们,要计算两个集合的并集的元素的个数,可分以下两步进行:第一步:分别计算集合的元素个数,然后加起来,即先求(意思是把的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去(意思是“排除”了重复计算的元素个数)二、三量重叠问题类、类与类元素个数的总和类元素的个数类元素个数类元素个数既是类又是类的元素个数既是类又是类的元素个数既是类又是类的元素个数
3、同时是类、类、类的元素个数用符号表示为:图示如下:1先包含:重叠部分、重叠了次,多加了次2再排除:重叠部分重叠了次,但是在进行 计算时都被减掉了3再包含:图中小圆表示的元素的个数,中圆表示的元素的个数,大圆表示的元素的个数在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考典例分析 考点一:两量重叠问题例1、实验小学四年级二班,参加语文兴趣小组的有人,参加数学兴趣小组的有人,有人两个小组都参加这个班有多少人参加了语文或数学兴趣小组?例2、对全班同学调查发现,会游泳的有人,会打篮球的有人两项都会的有人,两项都不会的有人这个班一共有多少人?例3、在人参加的采摘活动中,只采了樱桃的有
4、人,既采了樱桃又采了杏的有人,既没采樱桃又没采杏的有人,问:只采了杏的有多少人?例4、育才小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的,五、六年级共展出25幅画,其他年级的画共有多少幅?考点二:三量重叠问题例1、全班有个学生,其中人会骑自行车,人会游泳,人会滑冰,这三个运动项目没有人全会,至少会这三项运动之一的学生数学成绩都及格了,但又都不是优秀若全班有个人数学不及格,那么,(1) 数学成绩优秀的有几个学生?(2)有几个人既会游泳,又会滑冰?考点三:图形中的重叠问题例1、把长厘米和厘米的两根铁条焊接成一根铁条已知焊接部分长厘米,焊接后这根铁条有多长?例2、两张长
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四年级 奥数第 29 问题
链接地址:https://www.77wenku.com/p-125502.html