四年级奥数第18讲-重叠问题(教)
《四年级奥数第18讲-重叠问题(教)》由会员分享,可在线阅读,更多相关《四年级奥数第18讲-重叠问题(教)(11页珍藏版)》请在七七文库上搜索。
1、学科教师辅导讲义学员编号: 年 级:四年级 课 时 数:3学员姓名:辅导科目:数学学科教师: 授课主题第18讲-重叠问题 授课类型T同步课堂P实战演练S归纳总结教学目标 了解容斥原理二量重叠和三量重叠的内容 掌握容斥原理在组合计数等各个方面的应用授课日期及时段T(Textbook-Based)同步课堂知识梳理 一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:,则称这一公式为包含与排除原理,简称容斥原理图示如下:表示小圆部分,表示大
2、圆部分,表示大圆与小圆的公共部分,记为:,即阴影面积图示如下:表示小圆部分,表示大圆部分,表示大圆与小圆的公共部分,记为:,即阴影面积1先包含重叠部分计算了次,多加了次;2再排除把多加了次的重叠部分减去 包含与排除原理告诉我们,要计算两个集合的并集的元素的个数,可分以下两步进行:第一步:分别计算集合的元素个数,然后加起来,即先求(意思是把的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去(意思是“排除”了重复计算的元素个数)二、三量重叠问题类、类与类元素个数的总和类元素的个数类元素个数类元素个数既是类又是类的元素个数既是类又是类的元素个数既是类又是类的元素个数
3、同时是类、类、类的元素个数用符号表示为:图示如下:图中小圆表示的元素的个数,中圆表示的元素的个数,大圆表示的元素的个数1先包含:重叠部分、重叠了次,多加了次2再排除:重叠部分重叠了次,但是在进行 计算时都被减掉了3再包含:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考典例分析 考点一:两量重叠问题例1、实验小学四年级二班,参加语文兴趣小组的有人,参加数学兴趣小组的有人,有人两个小组都参加这个班有多少人参加了语文或数学兴趣小组?【解析】如图所示,圆表示参加语文兴趣小组的人,圆表示参加数学兴趣小组的人,与重合的部分(阴影部分)表示同时参加两个小组的人图中圆不含阴影的部分表示只
4、参加语文兴趣小组未参加数学兴趣小组的人,有(人);图中圆不含阴影的部分表示只参加数学兴趣小组未参加语文兴趣小组的人,有(人)方法一:由此得到参加语文或数学兴趣小组的有:(人) 方法二:根据包含排除法,直接可得: 参加语文或数学兴趣小组的人参加语文兴趣小组的人参加数学兴趣小组的人两个小组都参加的人,即:(人)例2、对全班同学调查发现,会游泳的有人,会打篮球的有人两项都会的有人,两项都不会的有人这个班一共有多少人?【解析】如图,用长方形表示全班人数,圆表示会游泳的人数,圆表示会打篮球的人数,长方形中阴影部分表示两项都不会的人数由图中可以看出,全班人数至少会一项的人数两项都不会的人数,至少会一项的人
5、数为:(人),全班人数为: (人)例3、在人参加的采摘活动中,只采了樱桃的有人,既采了樱桃又采了杏的有人,既没采樱桃又没采杏的有人,问:只采了杏的有多少人?【解析】如图,用长方形表示全体采摘人员人,圆表示采了樱桃的人数,圆表示采了杏的人数长方形中阴影部分表示既没采樱桃又没采杏的人数由图中可以看出,全体人员是至少采了一种的人数与两种都没采的人数之和,则至少采了一种的人数为:(人),而至少采了一种的人数只采了樱桃的人数两种都采了的人数只采了杏的人数,所以,只采了杏的人数为:(人)例4、育才小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的,五、六年级共展出25幅画,其他年
6、级的画共有多少幅?【解析】通过16幅画不是六年级的可以知道,五年级和其他年级的画作数量之和是16,通过15幅画不是五年级的可以知道六年级和其他年级的画作数量之和是15,那也就是说五年级的画比六年级多1幅,我们还知道五、六年级共展出25幅画,进而可以求出五年级画作有13幅,六年级画作有12幅,那么就可以求出其他年级的画作共有3幅考点二:三量重叠问题例1、全班有个学生,其中人会骑自行车,人会游泳,人会滑冰,这三个运动项目没有人全会,至少会这三项运动之一的学生数学成绩都及格了,但又都不是优秀若全班有个人数学不及格,那么,(1) 数学成绩优秀的有几个学生?(2)有几个人既会游泳,又会滑冰?【解析】(1
7、)有个数学不及格,那么及格的有:(人),即最多不会超过人会这三项运动之一而又因为没人全会这三项运动,那么,最少也会有:(人)至少会这三项运动之一于是,至少会三项运动之一的只能是人,而这人又不是优秀,说明全班人中除了人外,剩下的名不及格,所以没有数学成绩优秀的(2)上面分析可知,及格的人中,每人都会两项运动;会骑车的一定有一部分会游泳,一部分会滑冰;会游泳的人中若不会骑车就一定会滑冰,而会滑冰的人中若不会骑车就一定会游泳,但既会游泳又会滑冰的人一定不会骑自行车所以,全班有(人)既会游泳又会滑冰考点三:图形中的重叠问题例1、把长厘米和厘米的两根铁条焊接成一根铁条已知焊接部分长厘米,焊接后这根铁条有
8、多长?【解析】因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长(厘米)例2、两张长厘米,宽厘米的长方形纸摆放成如图所示形状把它放在桌面上,覆盖面积有多少平方厘米?【解析】两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为厘米的正方形,如果利用两个的长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了所以,被覆盖面积长方形面积之和-重叠部分于是,被覆盖面积(平方厘米)例3、三个面积均为平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是平方厘米三个纸片盖住桌面的总面积是厘米问:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四年级 奥数第 18 重叠 问题
文档标签
- 四年级奥数第05讲-最优化问题教
- 四年级奥数第16讲-定义运算教
- 四年级奥数第13讲-数数图形教
- 四年级奥数第21讲-周期问题教
- 四年级奥数第20讲-和差倍问题教
- 四年级奥数第10讲-间隔问题教
- 四年级奥数第11讲-巧妙求和教
- 四年级奥数第01讲-寻找规律教
- 四年级奥数第22讲-相遇问题教
- 四年级奥数第26讲-追及问题教
- 四年级奥数第28讲-盈亏问题教
- 四年级奥数第15讲-平均数问题教
- 四年级奥数第23讲-假设解题教
- 四年级奥数第06讲-变化规律教
- 四年级奥数第03讲-解决问题教
- 四年级奥数第17讲-差倍问题教
- 四年级奥数第24讲-还原问题教
- 四年级奥数第04讲-算式之谜教
- 四年级奥数第29讲-容斥问题教
- 四年级奥数第18讲-重叠问题教
链接地址:https://www.77wenku.com/p-125525.html