2018-2019学年辽宁省实验中学、大连八中、大连二十四中、鞍山一中、东北育才学校高二(上)期末数学试卷(文科)含详细解答
《2018-2019学年辽宁省实验中学、大连八中、大连二十四中、鞍山一中、东北育才学校高二(上)期末数学试卷(文科)含详细解答》由会员分享,可在线阅读,更多相关《2018-2019学年辽宁省实验中学、大连八中、大连二十四中、鞍山一中、东北育才学校高二(上)期末数学试卷(文科)含详细解答(19页珍藏版)》请在七七文库上搜索。
1、2018-2019学年辽宁省实验中学、大连八中、大连二十四中、鞍山一中、东北育才学校高二(上)期末数学试卷(文科)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一项是符合题目要求的1(5分)如果1ab0,则有()Ab2a2Ba2b2Cb2a2Da2b22(5分)已知命题p:“a0,有ea1成立”,则p为()Aa0,有ea1成立Ba0,有ea1成立Ca0,有ea1成立Da0,有ea1成立3(5分)已知各项均为正数的等比数列an中,公比q2,a4a664,则a1()A2B1CD4(5分)若f(x)是可导函数,则“f(x)0,xD”是“xD内f(x)单调递增”的(
2、)A充分但不必要条件B必要但不充分条件C充要条件D既不充分也不必要条件5(5分)在下列各函数中,最小值等于2的函数是()Ayx+Bysinx+(0)Cyex+2Dy6(5分)方程1表示双曲线则m的取值范围是()Am1Bm3或m2Cm4Dm4或m17(5分)已知x,y满足,则(x+3)2+y2的最小值为()ABC8D108(5分)等差数列an、bn的前n项和分别为Sn和Tn,若,则()ABCD9(5分)已知等差数列an的前n项和为Snn2+k+,则f(x)x3kx22x+1的极大值为()AB3CD210(5分)过抛物线C:y24x的焦点F的直线交抛物线C于A(x1,y1)、B(x2,y2)两点,
3、以线段AB为直径的圆的圆心为O1,半径为r点O1到C的准线l的距离与r之积为25,则r(x1+x2)()A40B30C25D2011(5分)知数列an的前n项和为Sn,a18,(3n5)an+1(3n2)an9n2+21n10,若n,mN*,nm,则SnSm的最大值为()A10B15C18D2612(5分)函数f(x)是定义在区间(0,+)上可导函数,其导函数为f(x)且满足xf(x)+2f(x)0,则不等式的解集为()Ax|x2014Bx|2019x2014Cx|0x2014Dx|x2014二、填空题;本大题共4小题,每小题5分,共20分13(5分)关于x的不等式axb0的解集是(1,+),
4、则关于x的不等式(ax+b)(x3)0的解集是 14(5分)已知数列an的前n项和为Sn,a11,2Sn(n+1)an,则an 15(5分)已知函数f(x)x3+3mx2+nx+m2在x1时有极值0,则m+n 16(5分)已知椭圆:l(ab0)的左、右焦点分别为F1、F2,若椭圆上存在一点P使得|PF1|e|PF2|,则该椭圆的离心率e的取值范围是 三、解答题:本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤17(10分)命题p:实数x满足x23ax+2a20,其中a0,命题q:实数x满足()若a2,且pq为真,求实数x的取值范围;()若q是p的充分不必要条件,求实数a的取值范围
5、18(12分)已知等差数列an的前n项和为Sn,且S28,a3+a82a5+2(1)求an;(2)设数列的前n项和为Tn,求证:19(12分)已知F为抛物线y2x的焦点,点A、B在该抛物线上且位于x轴的两侧,2(其中O为坐标原点)()求证:直线AB恒过定点;()直线AB在绕着定点转动的过程中,求弦AB中点M的轨迹方程20(12分)北京、张家港2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估该商品原来每件售价为25元,年销售8万件(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品
6、每件定价最多为多少元?(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x元公司拟投入万作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用试问:当该商品改革后的销售量a至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价21(12分)已知函数f(x)lnx,g(x)x+m(1)若f(x)g(x)恒成立,求实数m的取值范围;(2)若x1,x2是函数F(x)f(x)g(x)的两个零点,且x1x2,求证:x1x2122(12分)如图,已知椭圆E:+1(ab0)的离心率为
7、,过左焦点F(,0)且斜率为k的直线交椭圆E于A,B两点,线段AB的中点为M,直线l:x+4ky0交椭圆E于C,D两点()求椭圆E的方程;()求证:点M在直线l上;()是否存在实数k,使得三角形BDM的面积是三角形ACM的3倍?若存在,求出k的值;若不存在,说明理由2018-2019学年辽宁省实验中学、大连八中、大连二十四中、鞍山一中、东北育才学校高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一项是符合题目要求的1(5分)如果1ab0,则有()Ab2a2Ba2b2Cb2a2Da2b2【分析】取a,b,分别计算出
8、,b2,a2,由此能够判断出,b2,a2的大小【解答】解:取a,b,分别计算出32,b2a2由此能够判断出,b2,a2的大小故选:A【点评】本题考查不等式的性质和应用,解题时要合理地选取特殊值,能够有效地简化运算2(5分)已知命题p:“a0,有ea1成立”,则p为()Aa0,有ea1成立Ba0,有ea1成立Ca0,有ea1成立Da0,有ea1成立【分析】根据全称命题的否定是特称命题即可得到结论【解答】解:全称命题的否定是特称命题,则p:a0,有ea1成立,故选:C【点评】本题主要考查含有量词的命题的否定,比较基础3(5分)已知各项均为正数的等比数列an中,公比q2,a4a664,则a1()A2
9、B1CD【分析】利用等比数列的通项公式列出方程能求出首项【解答】解:各项均为正数的等比数列an中,公比q2,a4a664,()()64,解得a1故选:C【点评】本题考查等比数列的公比的求法,考等比数列的性质等基础知识,考查运算求解能力,是基础题4(5分)若f(x)是可导函数,则“f(x)0,xD”是“xD内f(x)单调递增”的()A充分但不必要条件B必要但不充分条件C充要条件D既不充分也不必要条件【分析】根据充分条件和必要条件的定义,结合导数与函数单调性的关系进行判断即可【解答】解:f(x)0,xDxD内f(x)单调递增,xD内f(x)单调递增f(x)0,xD;f(x)0,xD是xD内f(x)
10、单调递增的充分但不必要条件故选:A【点评】本题主要考查充分条件和必要条件的判断,根据导数与函数单调性的关系是解决本题的关键5(5分)在下列各函数中,最小值等于2的函数是()Ayx+Bysinx+(0)Cyex+2Dy【分析】直接利用排除法和基本不等式的应用和函数的性质的应用求出结果【解答】解:对于选项A、当x0时,yx+,当x0时,yx+2,故错误对于选项B、由于:,函数的最小值取不到2,当x时,函数的最小值为2,故错误对于选项D函数的关系式转换为:y,故错误故选:C【点评】本题考查的知识要点:函数的关系式的恒等变换和基本不等式的应用,主要考查学生的运算能力和转化能力属于基础题型6(5分)方程
11、1表示双曲线则m的取值范围是()Am1Bm3或m2Cm4Dm4或m1【分析】先计算方程表示双曲线的充要条件,列出不等式1就即可【解答】解:若方程1表示双曲线,则(2+m)(m3)0m2或m3,故选:B【点评】本题考查双曲线的简单性质的应用,属于基础题7(5分)已知x,y满足,则(x+3)2+y2的最小值为()ABC8D10【分析】先根据约束条件画出可行域,再利用几何意义求最值,z(x+3)2+y2表示(3,0)到可行域的距离的平方,只需求出(3,0)到可行域的距离的最小值即可【解答】解:根据约束条件画出可行域z(x+3)2+y2表示(3,0)到可行域的距离的平方,当点B(0,1)时,距离最小,
12、即最小距离为 则(x+2)2+y2的最小值是 10故选:D【点评】本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题巧妙识别目标函数的几何意义是我们研究规划问题的基础,纵观目标函数包括线性的与非线性,非线性问题的介入是线性规划问题的拓展与延伸,使得规划问题得以深化8(5分)等差数列an、bn的前n项和分别为Sn和Tn,若,则()ABCD【分析】根据等差数列的性质,结合等差数列的前n项和公式进行转化即可【解答】解:在等差数列中,故选:B【点评】本题主要考查等差数列性质的应用,结合等差数列的前n项和公式以及性质是解决本题的关键9(5分)已知等差数列an的前n项和
13、为Snn2+k+,则f(x)x3kx22x+1的极大值为()AB3CD2【分析】根据等差数列的性质求出k的值,从而求出f(x)的解析式,根据函数的单调性求出f(x)的极大值即可【解答】解:根据等差数列an的前n项和为Snn2+k+,得到k,f(x)x3+x22x+1,f(x)3x2+2x2(3x2)(x+1),令f(x)0,解得:x或x1,令f(x)0,解得:1x,故f(x)在(,1)递增,在(1,)递减,在(,+)递增,故f(x)的极大值是f(1)故选:A【点评】本题考查了函数的单调性、极值问题,考查等差数列的性质,是一道中档题10(5分)过抛物线C:y24x的焦点F的直线交抛物线C于A(x
14、1,y1)、B(x2,y2)两点,以线段AB为直径的圆的圆心为O1,半径为r点O1到C的准线l的距离与r之积为25,则r(x1+x2)()A40B30C25D20【分析】可得点O1到C的准线l的距离为5,又点O1到C的准线l的距离为,可得x1+x28,故r(x1+x2)40【解答】解:由抛物线的性质知,点O1到C的准线l的距离为,依题意得r225r5,又点O1到C的准线l的距离为,则有x1+x28,故r(x1+x2)40故选:A【点评】考查了抛物线的定义与简单几何性质,属于中档题11(5分)知数列an的前n项和为Sn,a18,(3n5)an+1(3n2)an9n2+21n10,若n,mN*,n
15、m,则SnSm的最大值为()A10B15C18D26【分析】由条件可得1,结合等差数列的定义和通项公式,以及数列的各项特点,求得最大值【解答】解:(3n5)an+1(3n2)an9n2+21n10,即为(3n5)an+1(3n2)an(3n5)(3n2),可得1,设bn,即bn+1bn1,可得bn是4为首项、1为公差的等差数列,可得bn4(n1)5n,即an(3n5)(5n),可得an:8,3,8,7,0,13,32,57,88,(n5,各项递减,且为负的),由n,mN*,nm,则SnSm的最大值为(8+3+8+7+0)(8)18故选:C【点评】本题考查数列的通项公式,注意运用构造等差数列,考
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 2019 学年 辽宁省 实验 中学 大连 十四 鞍山 一中 东北 育才 学校 期末 数学试卷 文科 详细 解答
链接地址:https://www.77wenku.com/p-125701.html